MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftf Unicode version

Theorem shftf 11849
Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftf  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  ( F  shift  A ) : { x  e.  CC  |  ( x  -  A )  e.  B } --> C )
Distinct variable groups:    x, A    x, F    x, B
Allowed substitution hint:    C( x)

Proof of Theorem shftf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ffn 5550 . . 3  |-  ( F : B --> C  ->  F  Fn  B )
2 shftfval.1 . . . 4  |-  F  e. 
_V
32shftfn 11843 . . 3  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } )
41, 3sylan 458 . 2  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } )
5 oveq1 6047 . . . . . 6  |-  ( x  =  y  ->  (
x  -  A )  =  ( y  -  A ) )
65eleq1d 2470 . . . . 5  |-  ( x  =  y  ->  (
( x  -  A
)  e.  B  <->  ( y  -  A )  e.  B
) )
76elrab 3052 . . . 4  |-  ( y  e.  { x  e.  CC  |  ( x  -  A )  e.  B }  <->  ( y  e.  CC  /\  ( y  -  A )  e.  B ) )
8 simpr 448 . . . . . 6  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  A  e.  CC )
9 simpl 444 . . . . . 6  |-  ( ( y  e.  CC  /\  ( y  -  A
)  e.  B )  ->  y  e.  CC )
102shftval 11844 . . . . . 6  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( ( F  shift  A ) `  y )  =  ( F `  ( y  -  A
) ) )
118, 9, 10syl2an 464 . . . . 5  |-  ( ( ( F : B --> C  /\  A  e.  CC )  /\  ( y  e.  CC  /\  ( y  -  A )  e.  B ) )  -> 
( ( F  shift  A ) `  y )  =  ( F `  ( y  -  A
) ) )
12 simpl 444 . . . . . 6  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  F : B --> C )
13 simpr 448 . . . . . 6  |-  ( ( y  e.  CC  /\  ( y  -  A
)  e.  B )  ->  ( y  -  A )  e.  B
)
14 ffvelrn 5827 . . . . . 6  |-  ( ( F : B --> C  /\  ( y  -  A
)  e.  B )  ->  ( F `  ( y  -  A
) )  e.  C
)
1512, 13, 14syl2an 464 . . . . 5  |-  ( ( ( F : B --> C  /\  A  e.  CC )  /\  ( y  e.  CC  /\  ( y  -  A )  e.  B ) )  -> 
( F `  (
y  -  A ) )  e.  C )
1611, 15eqeltrd 2478 . . . 4  |-  ( ( ( F : B --> C  /\  A  e.  CC )  /\  ( y  e.  CC  /\  ( y  -  A )  e.  B ) )  -> 
( ( F  shift  A ) `  y )  e.  C )
177, 16sylan2b 462 . . 3  |-  ( ( ( F : B --> C  /\  A  e.  CC )  /\  y  e.  {
x  e.  CC  | 
( x  -  A
)  e.  B }
)  ->  ( ( F  shift  A ) `  y )  e.  C
)
1817ralrimiva 2749 . 2  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  A. y  e.  {
x  e.  CC  | 
( x  -  A
)  e.  B } 
( ( F  shift  A ) `  y )  e.  C )
19 ffnfv 5853 . 2  |-  ( ( F  shift  A ) : { x  e.  CC  |  ( x  -  A )  e.  B }
--> C  <->  ( ( F 
shift  A )  Fn  {
x  e.  CC  | 
( x  -  A
)  e.  B }  /\  A. y  e.  {
x  e.  CC  | 
( x  -  A
)  e.  B } 
( ( F  shift  A ) `  y )  e.  C ) )
204, 18, 19sylanbrc 646 1  |-  ( ( F : B --> C  /\  A  e.  CC )  ->  ( F  shift  A ) : { x  e.  CC  |  ( x  -  A )  e.  B } --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   {crab 2670   _Vcvv 2916    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944    - cmin 9247    shift cshi 11836
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-ltxr 9081  df-sub 9249  df-shft 11837
  Copyright terms: Public domain W3C validator