MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftidt2 Unicode version

Theorem shftidt2 11576
Description: Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftidt2  |-  ( F 
shift  0 )  =  ( F  |`  CC )

Proof of Theorem shftidt2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subid1 9068 . . . . 5  |-  ( x  e.  CC  ->  (
x  -  0 )  =  x )
21breq1d 4033 . . . 4  |-  ( x  e.  CC  ->  (
( x  -  0 ) F y  <->  x F
y ) )
32pm5.32i 618 . . 3  |-  ( ( x  e.  CC  /\  ( x  -  0
) F y )  <-> 
( x  e.  CC  /\  x F y ) )
43opabbii 4083 . 2  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  0
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  x F y ) }
5 0cn 8831 . . 3  |-  0  e.  CC
6 shftfval.1 . . . 4  |-  F  e. 
_V
76shftfval 11565 . . 3  |-  ( 0  e.  CC  ->  ( F  shift  0 )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  0 ) F y ) } )
85, 7ax-mp 8 . 2  |-  ( F 
shift  0 )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  0 ) F y ) }
9 dfres2 5002 . 2  |-  ( F  |`  CC )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  x F y ) }
104, 8, 93eqtr4i 2313 1  |-  ( F 
shift  0 )  =  ( F  |`  CC )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   class class class wbr 4023   {copab 4076    |` cres 4691  (class class class)co 5858   CCcc 8735   0cc0 8737    - cmin 9037    shift cshi 11561
This theorem is referenced by:  shftidt  11577
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872  df-sub 9039  df-shft 11562
  Copyright terms: Public domain W3C validator