HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shincl Unicode version

Theorem shincl 21960
Description: Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shincl  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  i^i  B
)  e.  SH )

Proof of Theorem shincl
StepHypRef Expression
1 ineq1 3363 . . 3  |-  ( A  =  if ( A  e.  SH ,  A ,  ~H )  ->  ( A  i^i  B )  =  ( if ( A  e.  SH ,  A ,  ~H )  i^i  B
) )
21eleq1d 2349 . 2  |-  ( A  =  if ( A  e.  SH ,  A ,  ~H )  ->  (
( A  i^i  B
)  e.  SH  <->  ( if ( A  e.  SH ,  A ,  ~H )  i^i  B )  e.  SH ) )
3 ineq2 3364 . . 3  |-  ( B  =  if ( B  e.  SH ,  B ,  ~H )  ->  ( if ( A  e.  SH ,  A ,  ~H )  i^i  B )  =  ( if ( A  e.  SH ,  A ,  ~H )  i^i  if ( B  e.  SH ,  B ,  ~H )
) )
43eleq1d 2349 . 2  |-  ( B  =  if ( B  e.  SH ,  B ,  ~H )  ->  (
( if ( A  e.  SH ,  A ,  ~H )  i^i  B
)  e.  SH  <->  ( if ( A  e.  SH ,  A ,  ~H )  i^i  if ( B  e.  SH ,  B ,  ~H ) )  e.  SH ) )
5 helsh 21824 . . . 4  |-  ~H  e.  SH
65elimel 3617 . . 3  |-  if ( A  e.  SH ,  A ,  ~H )  e.  SH
75elimel 3617 . . 3  |-  if ( B  e.  SH ,  B ,  ~H )  e.  SH
86, 7shincli 21941 . 2  |-  ( if ( A  e.  SH ,  A ,  ~H )  i^i  if ( B  e.  SH ,  B ,  ~H ) )  e.  SH
92, 4, 8dedth2h 3607 1  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  i^i  B
)  e.  SH )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    i^i cin 3151   ifcif 3565   ~Hchil 21499   SHcsh 21508
This theorem is referenced by:  orthin  22025  sumdmdii  22995
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-i2m1 8805  ax-1ne0 8806  ax-rrecex 8809  ax-cnre 8810  ax-hilex 21579  ax-hfvadd 21580  ax-hv0cl 21583  ax-hfvmul 21585
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-map 6774  df-nn 9747  df-hlim 21552  df-sh 21786  df-ch 21801
  Copyright terms: Public domain W3C validator