HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shintcli Unicode version

Theorem shintcli 21924
Description: Closure of intersection of a non-empty subset of  SH. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
shintcl.1  |-  ( A 
C_  SH  /\  A  =/=  (/) )
Assertion
Ref Expression
shintcli  |-  |^| A  e.  SH

Proof of Theorem shintcli
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shintcl.1 . . . . 5  |-  ( A 
C_  SH  /\  A  =/=  (/) )
21simpri 448 . . . 4  |-  A  =/=  (/)
3 n0 3477 . . . . 5  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
4 intss1 3893 . . . . . . 7  |-  ( z  e.  A  ->  |^| A  C_  z )
51simpli 444 . . . . . . . . 9  |-  A  C_  SH
65sseli 3189 . . . . . . . 8  |-  ( z  e.  A  ->  z  e.  SH )
7 shss 21805 . . . . . . . 8  |-  ( z  e.  SH  ->  z  C_ 
~H )
86, 7syl 15 . . . . . . 7  |-  ( z  e.  A  ->  z  C_ 
~H )
94, 8sstrd 3202 . . . . . 6  |-  ( z  e.  A  ->  |^| A  C_ 
~H )
109exlimiv 1624 . . . . 5  |-  ( E. z  z  e.  A  ->  |^| A  C_  ~H )
113, 10sylbi 187 . . . 4  |-  ( A  =/=  (/)  ->  |^| A  C_  ~H )
122, 11ax-mp 8 . . 3  |-  |^| A  C_ 
~H
13 ax-hv0cl 21599 . . . . . 6  |-  0h  e.  ~H
1413elexi 2810 . . . . 5  |-  0h  e.  _V
1514elint2 3885 . . . 4  |-  ( 0h  e.  |^| A  <->  A. z  e.  A  0h  e.  z )
16 sh0 21811 . . . . 5  |-  ( z  e.  SH  ->  0h  e.  z )
176, 16syl 15 . . . 4  |-  ( z  e.  A  ->  0h  e.  z )
1815, 17mprgbir 2626 . . 3  |-  0h  e.  |^| A
1912, 18pm3.2i 441 . 2  |-  ( |^| A  C_  ~H  /\  0h  e.  |^| A )
20 elinti 3887 . . . . . . . . 9  |-  ( x  e.  |^| A  ->  (
z  e.  A  ->  x  e.  z )
)
2120com12 27 . . . . . . . 8  |-  ( z  e.  A  ->  (
x  e.  |^| A  ->  x  e.  z ) )
22 elinti 3887 . . . . . . . . 9  |-  ( y  e.  |^| A  ->  (
z  e.  A  -> 
y  e.  z ) )
2322com12 27 . . . . . . . 8  |-  ( z  e.  A  ->  (
y  e.  |^| A  ->  y  e.  z ) )
24 shaddcl 21812 . . . . . . . . . 10  |-  ( ( z  e.  SH  /\  x  e.  z  /\  y  e.  z )  ->  ( x  +h  y
)  e.  z )
256, 24syl3an1 1215 . . . . . . . . 9  |-  ( ( z  e.  A  /\  x  e.  z  /\  y  e.  z )  ->  ( x  +h  y
)  e.  z )
26253expib 1154 . . . . . . . 8  |-  ( z  e.  A  ->  (
( x  e.  z  /\  y  e.  z )  ->  ( x  +h  y )  e.  z ) )
2721, 23, 26syl2and 469 . . . . . . 7  |-  ( z  e.  A  ->  (
( x  e.  |^| A  /\  y  e.  |^| A )  ->  (
x  +h  y )  e.  z ) )
2827com12 27 . . . . . 6  |-  ( ( x  e.  |^| A  /\  y  e.  |^| A
)  ->  ( z  e.  A  ->  ( x  +h  y )  e.  z ) )
2928ralrimiv 2638 . . . . 5  |-  ( ( x  e.  |^| A  /\  y  e.  |^| A
)  ->  A. z  e.  A  ( x  +h  y )  e.  z )
30 ovex 5899 . . . . . 6  |-  ( x  +h  y )  e. 
_V
3130elint2 3885 . . . . 5  |-  ( ( x  +h  y )  e.  |^| A  <->  A. z  e.  A  ( x  +h  y )  e.  z )
3229, 31sylibr 203 . . . 4  |-  ( ( x  e.  |^| A  /\  y  e.  |^| A
)  ->  ( x  +h  y )  e.  |^| A )
3332rgen2a 2622 . . 3  |-  A. x  e.  |^| A A. y  e.  |^| A ( x  +h  y )  e. 
|^| A
34 shmulcl 21813 . . . . . . . . . 10  |-  ( ( z  e.  SH  /\  x  e.  CC  /\  y  e.  z )  ->  (
x  .h  y )  e.  z )
356, 34syl3an1 1215 . . . . . . . . 9  |-  ( ( z  e.  A  /\  x  e.  CC  /\  y  e.  z )  ->  (
x  .h  y )  e.  z )
36353expib 1154 . . . . . . . 8  |-  ( z  e.  A  ->  (
( x  e.  CC  /\  y  e.  z )  ->  ( x  .h  y )  e.  z ) )
3723, 36sylan2d 468 . . . . . . 7  |-  ( z  e.  A  ->  (
( x  e.  CC  /\  y  e.  |^| A
)  ->  ( x  .h  y )  e.  z ) )
3837com12 27 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  |^| A )  ->  ( z  e.  A  ->  ( x  .h  y )  e.  z ) )
3938ralrimiv 2638 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  |^| A )  ->  A. z  e.  A  ( x  .h  y
)  e.  z )
40 ovex 5899 . . . . . 6  |-  ( x  .h  y )  e. 
_V
4140elint2 3885 . . . . 5  |-  ( ( x  .h  y )  e.  |^| A  <->  A. z  e.  A  ( x  .h  y )  e.  z )
4239, 41sylibr 203 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  |^| A )  ->  ( x  .h  y )  e.  |^| A )
4342rgen2 2652 . . 3  |-  A. x  e.  CC  A. y  e. 
|^| A ( x  .h  y )  e. 
|^| A
4433, 43pm3.2i 441 . 2  |-  ( A. x  e.  |^| A A. y  e.  |^| A ( x  +h  y )  e.  |^| A  /\  A. x  e.  CC  A. y  e.  |^| A ( x  .h  y )  e. 
|^| A )
45 issh2 21804 . 2  |-  ( |^| A  e.  SH  <->  ( ( |^| A  C_  ~H  /\  0h  e.  |^| A )  /\  ( A. x  e.  |^| A A. y  e.  |^| A ( x  +h  y )  e.  |^| A  /\  A. x  e.  CC  A. y  e. 
|^| A ( x  .h  y )  e. 
|^| A ) ) )
4619, 44, 45mpbir2an 886 1  |-  |^| A  e.  SH
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1531    e. wcel 1696    =/= wne 2459   A.wral 2556    C_ wss 3165   (/)c0 3468   |^|cint 3878  (class class class)co 5874   CCcc 8751   ~Hchil 21515    +h cva 21516    .h csm 21517   0hc0v 21520   SHcsh 21524
This theorem is referenced by:  shintcl  21925  chintcli  21926  shincli  21957
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-hilex 21595  ax-hfvadd 21596  ax-hv0cl 21599  ax-hfvmul 21601
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-sh 21802
  Copyright terms: Public domain W3C validator