HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shlesb1i Structured version   Unicode version

Theorem shlesb1i 22893
Description: Hilbert lattice ordering in terms of subspace sum. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shlesb1.1  |-  A  e.  SH
shlesb1.2  |-  B  e.  SH
Assertion
Ref Expression
shlesb1i  |-  ( A 
C_  B  <->  ( A  +H  B )  =  B )

Proof of Theorem shlesb1i
StepHypRef Expression
1 ssid 3369 . . 3  |-  B  C_  B
21biantrur 494 . 2  |-  ( A 
C_  B  <->  ( B  C_  B  /\  A  C_  B ) )
3 shlesb1.2 . . 3  |-  B  e.  SH
4 shlesb1.1 . . 3  |-  A  e.  SH
53, 4, 3shslubi 22892 . 2  |-  ( ( B  C_  B  /\  A  C_  B )  <->  ( B  +H  A )  C_  B
)
63, 4shsub2i 22880 . . . 4  |-  B  C_  ( A  +H  B
)
7 eqss 3365 . . . 4  |-  ( ( A  +H  B )  =  B  <->  ( ( A  +H  B )  C_  B  /\  B  C_  ( A  +H  B ) ) )
86, 7mpbiran2 887 . . 3  |-  ( ( A  +H  B )  =  B  <->  ( A  +H  B )  C_  B
)
94, 3shscomi 22870 . . . 4  |-  ( A  +H  B )  =  ( B  +H  A
)
109sseq1i 3374 . . 3  |-  ( ( A  +H  B ) 
C_  B  <->  ( B  +H  A )  C_  B
)
118, 10bitr2i 243 . 2  |-  ( ( B  +H  A ) 
C_  B  <->  ( A  +H  B )  =  B )
122, 5, 113bitri 264 1  |-  ( A 
C_  B  <->  ( A  +H  B )  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    C_ wss 3322  (class class class)co 6084   SHcsh 22436    +H cph 22439
This theorem is referenced by:  shmodsi  22896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-hilex 22507  ax-hfvadd 22508  ax-hvcom 22509  ax-hvass 22510  ax-hv0cl 22511  ax-hvaddid 22512  ax-hfvmul 22513  ax-hvmulid 22514  ax-hvdistr2 22517  ax-hvmul0 22518
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-po 4506  df-so 4507  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-riota 6552  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-ltxr 9130  df-sub 9298  df-neg 9299  df-grpo 21784  df-ablo 21875  df-hvsub 22479  df-sh 22714  df-shs 22815
  Copyright terms: Public domain W3C validator