HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shmodsi Structured version   Unicode version

Theorem shmodsi 22896
Description: The modular law holds for subspace sum. Similar to part of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 23-Nov-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shmod.1  |-  A  e.  SH
shmod.2  |-  B  e.  SH
shmod.3  |-  C  e.  SH
Assertion
Ref Expression
shmodsi  |-  ( A 
C_  C  ->  (
( A  +H  B
)  i^i  C )  C_  ( A  +H  ( B  i^i  C ) ) )

Proof of Theorem shmodsi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3532 . . 3  |-  ( z  e.  ( ( A  +H  B )  i^i 
C )  <->  ( z  e.  ( A  +H  B
)  /\  z  e.  C ) )
2 shmod.1 . . . . . . 7  |-  A  e.  SH
3 shmod.2 . . . . . . 7  |-  B  e.  SH
42, 3shseli 22823 . . . . . 6  |-  ( z  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  z  =  ( x  +h  y
) )
5 shmod.3 . . . . . . . . . . . . . . 15  |-  C  e.  SH
65sheli 22721 . . . . . . . . . . . . . 14  |-  ( z  e.  C  ->  z  e.  ~H )
72sheli 22721 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  x  e.  ~H )
83sheli 22721 . . . . . . . . . . . . . 14  |-  ( y  e.  B  ->  y  e.  ~H )
9 hvsubadd 22584 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ~H  /\  x  e.  ~H  /\  y  e.  ~H )  ->  (
( z  -h  x
)  =  y  <->  ( x  +h  y )  =  z ) )
106, 7, 8, 9syl3an 1227 . . . . . . . . . . . . 13  |-  ( ( z  e.  C  /\  x  e.  A  /\  y  e.  B )  ->  ( ( z  -h  x )  =  y  <-> 
( x  +h  y
)  =  z ) )
11 eqcom 2440 . . . . . . . . . . . . 13  |-  ( ( x  +h  y )  =  z  <->  z  =  ( x  +h  y
) )
1210, 11syl6bb 254 . . . . . . . . . . . 12  |-  ( ( z  e.  C  /\  x  e.  A  /\  y  e.  B )  ->  ( ( z  -h  x )  =  y  <-> 
z  =  ( x  +h  y ) ) )
13123expb 1155 . . . . . . . . . . 11  |-  ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
( z  -h  x
)  =  y  <->  z  =  ( x  +h  y
) ) )
145, 2shsvsi 22874 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  C  /\  x  e.  A )  ->  ( z  -h  x
)  e.  ( C  +H  A ) )
155, 2shscomi 22870 . . . . . . . . . . . . . . . . . . . 20  |-  ( C  +H  A )  =  ( A  +H  C
)
1614, 15syl6eleq 2528 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  C  /\  x  e.  A )  ->  ( z  -h  x
)  e.  ( A  +H  C ) )
172, 5shlesb1i 22893 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A 
C_  C  <->  ( A  +H  C )  =  C )
1817biimpi 188 . . . . . . . . . . . . . . . . . . . 20  |-  ( A 
C_  C  ->  ( A  +H  C )  =  C )
1918eleq2d 2505 . . . . . . . . . . . . . . . . . . 19  |-  ( A 
C_  C  ->  (
( z  -h  x
)  e.  ( A  +H  C )  <->  ( z  -h  x )  e.  C
) )
2016, 19syl5ib 212 . . . . . . . . . . . . . . . . . 18  |-  ( A 
C_  C  ->  (
( z  e.  C  /\  x  e.  A
)  ->  ( z  -h  x )  e.  C
) )
21 eleq1 2498 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  -h  x )  =  y  ->  (
( z  -h  x
)  e.  C  <->  y  e.  C ) )
2221biimpd 200 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  -h  x )  =  y  ->  (
( z  -h  x
)  e.  C  -> 
y  e.  C ) )
2320, 22sylan9 640 . . . . . . . . . . . . . . . . 17  |-  ( ( A  C_  C  /\  ( z  -h  x
)  =  y )  ->  ( ( z  e.  C  /\  x  e.  A )  ->  y  e.  C ) )
2423anim2d 550 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  C  /\  ( z  -h  x
)  =  y )  ->  ( ( y  e.  B  /\  (
z  e.  C  /\  x  e.  A )
)  ->  ( y  e.  B  /\  y  e.  C ) ) )
25 elin 3532 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( B  i^i  C )  <->  ( y  e.  B  /\  y  e.  C ) )
2624, 25syl6ibr 220 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  C  /\  ( z  -h  x
)  =  y )  ->  ( ( y  e.  B  /\  (
z  e.  C  /\  x  e.  A )
)  ->  y  e.  ( B  i^i  C ) ) )
2726ex 425 . . . . . . . . . . . . . 14  |-  ( A 
C_  C  ->  (
( z  -h  x
)  =  y  -> 
( ( y  e.  B  /\  ( z  e.  C  /\  x  e.  A ) )  -> 
y  e.  ( B  i^i  C ) ) ) )
2827com13 77 . . . . . . . . . . . . 13  |-  ( ( y  e.  B  /\  ( z  e.  C  /\  x  e.  A
) )  ->  (
( z  -h  x
)  =  y  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) ) )
2928ancoms 441 . . . . . . . . . . . 12  |-  ( ( ( z  e.  C  /\  x  e.  A
)  /\  y  e.  B )  ->  (
( z  -h  x
)  =  y  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) ) )
3029anasss 630 . . . . . . . . . . 11  |-  ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
( z  -h  x
)  =  y  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) ) )
3113, 30sylbird 228 . . . . . . . . . 10  |-  ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
z  =  ( x  +h  y )  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) ) )
3231imp 420 . . . . . . . . 9  |-  ( ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  /\  z  =  ( x  +h  y ) )  -> 
( A  C_  C  ->  y  e.  ( B  i^i  C ) ) )
333, 5shincli 22869 . . . . . . . . . . . . . . 15  |-  ( B  i^i  C )  e.  SH
342, 33shsvai 22871 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  y  e.  ( B  i^i  C ) )  -> 
( x  +h  y
)  e.  ( A  +H  ( B  i^i  C ) ) )
35 eleq1 2498 . . . . . . . . . . . . . 14  |-  ( z  =  ( x  +h  y )  ->  (
z  e.  ( A  +H  ( B  i^i  C ) )  <->  ( x  +h  y )  e.  ( A  +H  ( B  i^i  C ) ) ) )
3634, 35syl5ibr 214 . . . . . . . . . . . . 13  |-  ( z  =  ( x  +h  y )  ->  (
( x  e.  A  /\  y  e.  ( B  i^i  C ) )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) )
3736exp3a 427 . . . . . . . . . . . 12  |-  ( z  =  ( x  +h  y )  ->  (
x  e.  A  -> 
( y  e.  ( B  i^i  C )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
3837com12 30 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
z  =  ( x  +h  y )  -> 
( y  e.  ( B  i^i  C )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
3938ad2antrl 710 . . . . . . . . . 10  |-  ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
z  =  ( x  +h  y )  -> 
( y  e.  ( B  i^i  C )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
4039imp 420 . . . . . . . . 9  |-  ( ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  /\  z  =  ( x  +h  y ) )  -> 
( y  e.  ( B  i^i  C )  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) )
4132, 40syld 43 . . . . . . . 8  |-  ( ( ( z  e.  C  /\  ( x  e.  A  /\  y  e.  B
) )  /\  z  =  ( x  +h  y ) )  -> 
( A  C_  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) )
4241exp31 589 . . . . . . 7  |-  ( z  e.  C  ->  (
( x  e.  A  /\  y  e.  B
)  ->  ( z  =  ( x  +h  y )  ->  ( A  C_  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) ) )
4342rexlimdvv 2838 . . . . . 6  |-  ( z  e.  C  ->  ( E. x  e.  A  E. y  e.  B  z  =  ( x  +h  y )  ->  ( A  C_  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
444, 43syl5bi 210 . . . . 5  |-  ( z  e.  C  ->  (
z  e.  ( A  +H  B )  -> 
( A  C_  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
4544com13 77 . . . 4  |-  ( A 
C_  C  ->  (
z  e.  ( A  +H  B )  -> 
( z  e.  C  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) ) )
4645imp3a 422 . . 3  |-  ( A 
C_  C  ->  (
( z  e.  ( A  +H  B )  /\  z  e.  C
)  ->  z  e.  ( A  +H  ( B  i^i  C ) ) ) )
471, 46syl5bi 210 . 2  |-  ( A 
C_  C  ->  (
z  e.  ( ( A  +H  B )  i^i  C )  -> 
z  e.  ( A  +H  ( B  i^i  C ) ) ) )
4847ssrdv 3356 1  |-  ( A 
C_  C  ->  (
( A  +H  B
)  i^i  C )  C_  ( A  +H  ( B  i^i  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   E.wrex 2708    i^i cin 3321    C_ wss 3322  (class class class)co 6084   ~Hchil 22427    +h cva 22428    -h cmv 22433   SHcsh 22436    +H cph 22439
This theorem is referenced by:  shmodi  22897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-hilex 22507  ax-hfvadd 22508  ax-hvcom 22509  ax-hvass 22510  ax-hv0cl 22511  ax-hvaddid 22512  ax-hfvmul 22513  ax-hvmulid 22514  ax-hvdistr1 22516  ax-hvdistr2 22517  ax-hvmul0 22518
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-ltxr 9130  df-sub 9298  df-neg 9299  df-nn 10006  df-grpo 21784  df-ablo 21875  df-hvsub 22479  df-hlim 22480  df-sh 22714  df-ch 22729  df-shs 22815
  Copyright terms: Public domain W3C validator