HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shscli Unicode version

Theorem shscli 21896
Description: Closure of subspace sum. (Contributed by NM, 15-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
shscl.1  |-  A  e.  SH
shscl.2  |-  B  e.  SH
Assertion
Ref Expression
shscli  |-  ( A  +H  B )  e.  SH

Proof of Theorem shscli
Dummy variables  x  f  y  z  w  g  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shscl.1 . . . 4  |-  A  e.  SH
2 shscl.2 . . . 4  |-  B  e.  SH
3 shsss 21892 . . . 4  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  C_  ~H )
41, 2, 3mp2an 653 . . 3  |-  ( A  +H  B )  C_  ~H
5 sh0 21795 . . . . . 6  |-  ( A  e.  SH  ->  0h  e.  A )
61, 5ax-mp 8 . . . . 5  |-  0h  e.  A
7 sh0 21795 . . . . . 6  |-  ( B  e.  SH  ->  0h  e.  B )
82, 7ax-mp 8 . . . . 5  |-  0h  e.  B
9 ax-hv0cl 21583 . . . . . . 7  |-  0h  e.  ~H
109hvaddid2i 21608 . . . . . 6  |-  ( 0h 
+h  0h )  =  0h
1110eqcomi 2287 . . . . 5  |-  0h  =  ( 0h  +h  0h )
12 rspceov 5893 . . . . 5  |-  ( ( 0h  e.  A  /\  0h  e.  B  /\  0h  =  ( 0h  +h  0h ) )  ->  E. x  e.  A  E. y  e.  B  0h  =  ( x  +h  y
) )
136, 8, 11, 12mp3an 1277 . . . 4  |-  E. x  e.  A  E. y  e.  B  0h  =  ( x  +h  y
)
141, 2shseli 21895 . . . 4  |-  ( 0h  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  0h  =  ( x  +h  y
) )
1513, 14mpbir 200 . . 3  |-  0h  e.  ( A  +H  B
)
164, 15pm3.2i 441 . 2  |-  ( ( A  +H  B ) 
C_  ~H  /\  0h  e.  ( A  +H  B
) )
171, 2shseli 21895 . . . . . 6  |-  ( x  e.  ( A  +H  B )  <->  E. z  e.  A  E. w  e.  B  x  =  ( z  +h  w
) )
181, 2shseli 21895 . . . . . 6  |-  ( y  e.  ( A  +H  B )  <->  E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u
) )
19 shaddcl 21796 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  SH  /\  z  e.  A  /\  v  e.  A )  ->  ( z  +h  v
)  e.  A )
201, 19mp3an1 1264 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  A  /\  v  e.  A )  ->  ( z  +h  v
)  e.  A )
2120ad2ant2r 727 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  A  /\  w  e.  B
)  /\  ( v  e.  A  /\  u  e.  B ) )  -> 
( z  +h  v
)  e.  A )
2221ad2ant2r 727 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( z  +h  v )  e.  A
)
23 shaddcl 21796 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  SH  /\  w  e.  B  /\  u  e.  B )  ->  ( w  +h  u
)  e.  B )
242, 23mp3an1 1264 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  B  /\  u  e.  B )  ->  ( w  +h  u
)  e.  B )
2524ad2ant2l 726 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  A  /\  w  e.  B
)  /\  ( v  e.  A  /\  u  e.  B ) )  -> 
( w  +h  u
)  e.  B )
2625ad2ant2r 727 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( w  +h  u )  e.  B
)
27 oveq12 5867 . . . . . . . . . . . . . . 15  |-  ( ( x  =  ( z  +h  w )  /\  y  =  ( v  +h  u ) )  -> 
( x  +h  y
)  =  ( ( z  +h  w )  +h  ( v  +h  u ) ) )
2827ad2ant2l 726 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( x  +h  y )  =  ( ( z  +h  w
)  +h  ( v  +h  u ) ) )
291sheli 21793 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  A  ->  z  e.  ~H )
301sheli 21793 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  A  ->  v  e.  ~H )
3129, 30anim12i 549 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  A  /\  v  e.  A )  ->  ( z  e.  ~H  /\  v  e.  ~H )
)
322sheli 21793 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  B  ->  w  e.  ~H )
332sheli 21793 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  B  ->  u  e.  ~H )
3432, 33anim12i 549 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  B  /\  u  e.  B )  ->  ( w  e.  ~H  /\  u  e.  ~H )
)
35 hvadd4 21615 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  e.  ~H  /\  v  e.  ~H )  /\  ( w  e.  ~H  /\  u  e.  ~H )
)  ->  ( (
z  +h  v )  +h  ( w  +h  u ) )  =  ( ( z  +h  w )  +h  (
v  +h  u ) ) )
3631, 34, 35syl2an 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  A  /\  v  e.  A
)  /\  ( w  e.  B  /\  u  e.  B ) )  -> 
( ( z  +h  v )  +h  (
w  +h  u ) )  =  ( ( z  +h  w )  +h  ( v  +h  u ) ) )
3736an4s 799 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  A  /\  w  e.  B
)  /\  ( v  e.  A  /\  u  e.  B ) )  -> 
( ( z  +h  v )  +h  (
w  +h  u ) )  =  ( ( z  +h  w )  +h  ( v  +h  u ) ) )
3837ad2ant2r 727 . . . . . . . . . . . . . 14  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( ( z  +h  v )  +h  ( w  +h  u
) )  =  ( ( z  +h  w
)  +h  ( v  +h  u ) ) )
3928, 38eqtr4d 2318 . . . . . . . . . . . . 13  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  ( x  +h  y )  =  ( ( z  +h  v
)  +h  ( w  +h  u ) ) )
40 rspceov 5893 . . . . . . . . . . . . 13  |-  ( ( ( z  +h  v
)  e.  A  /\  ( w  +h  u
)  e.  B  /\  ( x  +h  y
)  =  ( ( z  +h  v )  +h  ( w  +h  u ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
4122, 26, 39, 40syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) )  /\  ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
4241ancoms 439 . . . . . . . . . . 11  |-  ( ( ( ( v  e.  A  /\  u  e.  B )  /\  y  =  ( v  +h  u ) )  /\  ( ( z  e.  A  /\  w  e.  B )  /\  x  =  ( z  +h  w ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
4342exp43 595 . . . . . . . . . 10  |-  ( ( v  e.  A  /\  u  e.  B )  ->  ( y  =  ( v  +h  u )  ->  ( ( z  e.  A  /\  w  e.  B )  ->  (
x  =  ( z  +h  w )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) ) ) ) )
4443rexlimivv 2672 . . . . . . . . 9  |-  ( E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u )  ->  (
( z  e.  A  /\  w  e.  B
)  ->  ( x  =  ( z  +h  w )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y )  =  ( f  +h  g ) ) ) )
4544com3l 75 . . . . . . . 8  |-  ( ( z  e.  A  /\  w  e.  B )  ->  ( x  =  ( z  +h  w )  ->  ( E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u
)  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y )  =  ( f  +h  g ) ) ) )
4645rexlimivv 2672 . . . . . . 7  |-  ( E. z  e.  A  E. w  e.  B  x  =  ( z  +h  w )  ->  ( E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y )  =  ( f  +h  g ) ) )
4746imp 418 . . . . . 6  |-  ( ( E. z  e.  A  E. w  e.  B  x  =  ( z  +h  w )  /\  E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
4817, 18, 47syl2anb 465 . . . . 5  |-  ( ( x  e.  ( A  +H  B )  /\  y  e.  ( A  +H  B ) )  ->  E. f  e.  A  E. g  e.  B  ( x  +h  y
)  =  ( f  +h  g ) )
491, 2shseli 21895 . . . . 5  |-  ( ( x  +h  y )  e.  ( A  +H  B )  <->  E. f  e.  A  E. g  e.  B  ( x  +h  y )  =  ( f  +h  g ) )
5048, 49sylibr 203 . . . 4  |-  ( ( x  e.  ( A  +H  B )  /\  y  e.  ( A  +H  B ) )  -> 
( x  +h  y
)  e.  ( A  +H  B ) )
5150rgen2a 2609 . . 3  |-  A. x  e.  ( A  +H  B
) A. y  e.  ( A  +H  B
) ( x  +h  y )  e.  ( A  +H  B )
52 shmulcl 21797 . . . . . . . . . . . . . 14  |-  ( ( A  e.  SH  /\  x  e.  CC  /\  v  e.  A )  ->  (
x  .h  v )  e.  A )
531, 52mp3an1 1264 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  v  e.  A )  ->  ( x  .h  v
)  e.  A )
5453adantrr 697 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  v
)  e.  A )
55 shmulcl 21797 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  SH  /\  x  e.  CC  /\  u  e.  B )  ->  (
x  .h  u )  e.  B )
562, 55mp3an1 1264 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  u  e.  B )  ->  ( x  .h  u
)  e.  B )
5756adantrr 697 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) )  ->  (
x  .h  u )  e.  B )
5857adantrl 696 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  u
)  e.  B )
59 oveq2 5866 . . . . . . . . . . . . . . 15  |-  ( y  =  ( v  +h  u )  ->  (
x  .h  y )  =  ( x  .h  ( v  +h  u
) ) )
6059adantl 452 . . . . . . . . . . . . . 14  |-  ( ( u  e.  B  /\  y  =  ( v  +h  u ) )  -> 
( x  .h  y
)  =  ( x  .h  ( v  +h  u ) ) )
6160ad2antll 709 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  y
)  =  ( x  .h  ( v  +h  u ) ) )
62 id 19 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  x  e.  CC )
63 ax-hvdistr1 21588 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  v  e.  ~H  /\  u  e.  ~H )  ->  (
x  .h  ( v  +h  u ) )  =  ( ( x  .h  v )  +h  ( x  .h  u
) ) )
6462, 30, 33, 63syl3an 1224 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  v  e.  A  /\  u  e.  B )  ->  ( x  .h  (
v  +h  u ) )  =  ( ( x  .h  v )  +h  ( x  .h  u ) ) )
65643expb 1152 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  u  e.  B
) )  ->  (
x  .h  ( v  +h  u ) )  =  ( ( x  .h  v )  +h  ( x  .h  u
) ) )
6665adantrrr 705 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  (
v  +h  u ) )  =  ( ( x  .h  v )  +h  ( x  .h  u ) ) )
6761, 66eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  -> 
( x  .h  y
)  =  ( ( x  .h  v )  +h  ( x  .h  u ) ) )
68 rspceov 5893 . . . . . . . . . . . 12  |-  ( ( ( x  .h  v
)  e.  A  /\  ( x  .h  u
)  e.  B  /\  ( x  .h  y
)  =  ( ( x  .h  v )  +h  ( x  .h  u ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y
)  =  ( f  +h  g ) )
6954, 58, 67, 68syl3anc 1182 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) ) )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y
)  =  ( f  +h  g ) )
7069ancoms 439 . . . . . . . . . 10  |-  ( ( ( v  e.  A  /\  ( u  e.  B  /\  y  =  (
v  +h  u ) ) )  /\  x  e.  CC )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y )  =  ( f  +h  g ) )
7170exp42 594 . . . . . . . . 9  |-  ( v  e.  A  ->  (
u  e.  B  -> 
( y  =  ( v  +h  u )  ->  ( x  e.  CC  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y )  =  ( f  +h  g ) ) ) ) )
7271imp 418 . . . . . . . 8  |-  ( ( v  e.  A  /\  u  e.  B )  ->  ( y  =  ( v  +h  u )  ->  ( x  e.  CC  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y )  =  ( f  +h  g ) ) ) )
7372rexlimivv 2672 . . . . . . 7  |-  ( E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u )  ->  (
x  e.  CC  ->  E. f  e.  A  E. g  e.  B  (
x  .h  y )  =  ( f  +h  g ) ) )
7473impcom 419 . . . . . 6  |-  ( ( x  e.  CC  /\  E. v  e.  A  E. u  e.  B  y  =  ( v  +h  u ) )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y
)  =  ( f  +h  g ) )
7518, 74sylan2b 461 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  ( A  +H  B ) )  ->  E. f  e.  A  E. g  e.  B  ( x  .h  y
)  =  ( f  +h  g ) )
761, 2shseli 21895 . . . . 5  |-  ( ( x  .h  y )  e.  ( A  +H  B )  <->  E. f  e.  A  E. g  e.  B  ( x  .h  y )  =  ( f  +h  g ) )
7775, 76sylibr 203 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  ( A  +H  B ) )  -> 
( x  .h  y
)  e.  ( A  +H  B ) )
7877rgen2 2639 . . 3  |-  A. x  e.  CC  A. y  e.  ( A  +H  B
) ( x  .h  y )  e.  ( A  +H  B )
7951, 78pm3.2i 441 . 2  |-  ( A. x  e.  ( A  +H  B ) A. y  e.  ( A  +H  B
) ( x  +h  y )  e.  ( A  +H  B )  /\  A. x  e.  CC  A. y  e.  ( A  +H  B
) ( x  .h  y )  e.  ( A  +H  B ) )
80 issh2 21788 . 2  |-  ( ( A  +H  B )  e.  SH  <->  ( (
( A  +H  B
)  C_  ~H  /\  0h  e.  ( A  +H  B
) )  /\  ( A. x  e.  ( A  +H  B ) A. y  e.  ( A  +H  B ) ( x  +h  y )  e.  ( A  +H  B
)  /\  A. x  e.  CC  A. y  e.  ( A  +H  B
) ( x  .h  y )  e.  ( A  +H  B ) ) ) )
8116, 79, 80mpbir2an 886 1  |-  ( A  +H  B )  e.  SH
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152  (class class class)co 5858   CCcc 8735   ~Hchil 21499    +h cva 21500    .h csm 21501   0hc0v 21504   SHcsh 21508    +H cph 21511
This theorem is referenced by:  shscl  21897  shsval2i  21966  shjshsi  22071  spanuni  22123  5oalem1  22233  5oalem3  22235  5oalem5  22237  5oalem6  22238  5oai  22240  3oalem2  22242  3oalem6  22246  mayete3i  22307  mayete3iOLD  22308  sumdmdlem  22998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872  df-sub 9039  df-neg 9040  df-grpo 20858  df-ablo 20949  df-hvsub 21551  df-sh 21786  df-shs 21887
  Copyright terms: Public domain W3C validator