HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shssii Unicode version

Theorem shssii 21792
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
shssi.1  |-  H  e.  SH
Assertion
Ref Expression
shssii  |-  H  C_  ~H

Proof of Theorem shssii
StepHypRef Expression
1 shssi.1 . 2  |-  H  e.  SH
2 shss 21789 . 2  |-  ( H  e.  SH  ->  H  C_ 
~H )
31, 2ax-mp 8 1  |-  H  C_  ~H
Colors of variables: wff set class
Syntax hints:    e. wcel 1684    C_ wss 3152   ~Hchil 21499   SHcsh 21508
This theorem is referenced by:  sheli  21793  shelii  21794  chssii  21811  hhssabloi  21839  hhssnv  21841  hhssba  21848  shunssji  21948  shsval3i  21967  shjshsi  22071  span0  22121  spanuni  22123  imaelshi  22638  nlelchi  22641  hmopidmchi  22731  pjimai  22756  shatomistici  22941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-hilex 21579
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-sh 21786
  Copyright terms: Public domain W3C validator