MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  siilem1 Structured version   Unicode version

Theorem siilem1 22383
Description: Lemma for sii 22386. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
siii.1  |-  X  =  ( BaseSet `  U )
siii.6  |-  N  =  ( normCV `  U )
siii.7  |-  P  =  ( .i OLD `  U
)
siii.9  |-  U  e.  CPreHil
OLD
siii.a  |-  A  e.  X
siii.b  |-  B  e.  X
sii1.3  |-  M  =  ( -v `  U
)
sii1.4  |-  S  =  ( .s OLD `  U
)
sii1.c  |-  C  e.  CC
sii1.r  |-  ( C  x.  ( A P B ) )  e.  RR
sii1.z  |-  0  <_  ( C  x.  ( A P B ) )
Assertion
Ref Expression
siilem1  |-  ( ( B P A )  =  ( C  x.  ( ( N `  B ) ^ 2 ) )  ->  ( sqr `  ( ( A P B )  x.  ( C  x.  (
( N `  B
) ^ 2 ) ) ) )  <_ 
( ( N `  A )  x.  ( N `  B )
) )

Proof of Theorem siilem1
StepHypRef Expression
1 siii.1 . . . . . . . . . 10  |-  X  =  ( BaseSet `  U )
2 siii.6 . . . . . . . . . 10  |-  N  =  ( normCV `  U )
3 siii.9 . . . . . . . . . . 11  |-  U  e.  CPreHil
OLD
43phnvi 22348 . . . . . . . . . 10  |-  U  e.  NrmCVec
5 siii.a . . . . . . . . . . 11  |-  A  e.  X
6 sii1.c . . . . . . . . . . . . 13  |-  C  e.  CC
76cjcli 12005 . . . . . . . . . . . 12  |-  ( * `
 C )  e.  CC
8 siii.b . . . . . . . . . . . 12  |-  B  e.  X
9 sii1.4 . . . . . . . . . . . . 13  |-  S  =  ( .s OLD `  U
)
101, 9nvscl 22138 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  (
* `  C )  e.  CC  /\  B  e.  X )  ->  (
( * `  C
) S B )  e.  X )
114, 7, 8, 10mp3an 1280 . . . . . . . . . . 11  |-  ( ( * `  C ) S B )  e.  X
12 sii1.3 . . . . . . . . . . . 12  |-  M  =  ( -v `  U
)
131, 12nvmcl 22159 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  (
( * `  C
) S B )  e.  X )  -> 
( A M ( ( * `  C
) S B ) )  e.  X )
144, 5, 11, 13mp3an 1280 . . . . . . . . . 10  |-  ( A M ( ( * `
 C ) S B ) )  e.  X
151, 2, 4, 14nvcli 22180 . . . . . . . . 9  |-  ( N `
 ( A M ( ( * `  C ) S B ) ) )  e.  RR
1615sqge0i 11500 . . . . . . . 8  |-  0  <_  ( ( N `  ( A M ( ( * `  C ) S B ) ) ) ^ 2 )
1714, 5, 113pm3.2i 1133 . . . . . . . . . 10  |-  ( ( A M ( ( * `  C ) S B ) )  e.  X  /\  A  e.  X  /\  (
( * `  C
) S B )  e.  X )
18 siii.7 . . . . . . . . . . 11  |-  P  =  ( .i OLD `  U
)
191, 12, 18dipsubdi 22381 . . . . . . . . . 10  |-  ( ( U  e.  CPreHil OLD  /\  ( ( A M ( ( * `  C ) S B ) )  e.  X  /\  A  e.  X  /\  ( ( * `  C ) S B )  e.  X ) )  ->  ( ( A M ( ( * `
 C ) S B ) ) P ( A M ( ( * `  C
) S B ) ) )  =  ( ( ( A M ( ( * `  C ) S B ) ) P A )  -  ( ( A M ( ( * `  C ) S B ) ) P ( ( * `
 C ) S B ) ) ) )
203, 17, 19mp2an 655 . . . . . . . . 9  |-  ( ( A M ( ( * `  C ) S B ) ) P ( A M ( ( * `  C ) S B ) ) )  =  ( ( ( A M ( ( * `
 C ) S B ) ) P A )  -  (
( A M ( ( * `  C
) S B ) ) P ( ( * `  C ) S B ) ) )
211, 2, 18ipidsq 22240 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  ( A M ( ( * `
 C ) S B ) )  e.  X )  ->  (
( A M ( ( * `  C
) S B ) ) P ( A M ( ( * `
 C ) S B ) ) )  =  ( ( N `
 ( A M ( ( * `  C ) S B ) ) ) ^
2 ) )
224, 14, 21mp2an 655 . . . . . . . . 9  |-  ( ( A M ( ( * `  C ) S B ) ) P ( A M ( ( * `  C ) S B ) ) )  =  ( ( N `  ( A M ( ( * `  C ) S B ) ) ) ^ 2 )
237, 8, 113pm3.2i 1133 . . . . . . . . . . . . . . 15  |-  ( ( * `  C )  e.  CC  /\  B  e.  X  /\  (
( * `  C
) S B )  e.  X )
241, 9, 18dipass 22377 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  CPreHil OLD  /\  ( ( * `  C )  e.  CC  /\  B  e.  X  /\  ( ( * `  C ) S B )  e.  X ) )  ->  ( (
( * `  C
) S B ) P ( ( * `
 C ) S B ) )  =  ( ( * `  C )  x.  ( B P ( ( * `
 C ) S B ) ) ) )
253, 23, 24mp2an 655 . . . . . . . . . . . . . 14  |-  ( ( ( * `  C
) S B ) P ( ( * `
 C ) S B ) )  =  ( ( * `  C )  x.  ( B P ( ( * `
 C ) S B ) ) )
268, 6, 83pm3.2i 1133 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  X  /\  C  e.  CC  /\  B  e.  X )
271, 9, 18dipassr2 22379 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  CPreHil OLD  /\  ( B  e.  X  /\  C  e.  CC  /\  B  e.  X ) )  ->  ( B P ( ( * `
 C ) S B ) )  =  ( C  x.  ( B P B ) ) )
283, 26, 27mp2an 655 . . . . . . . . . . . . . . . 16  |-  ( B P ( ( * `
 C ) S B ) )  =  ( C  x.  ( B P B ) )
291, 2, 18ipidsq 22240 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( B P B )  =  ( ( N `  B ) ^ 2 ) )
304, 8, 29mp2an 655 . . . . . . . . . . . . . . . . 17  |-  ( B P B )  =  ( ( N `  B ) ^ 2 )
3130oveq2i 6121 . . . . . . . . . . . . . . . 16  |-  ( C  x.  ( B P B ) )  =  ( C  x.  (
( N `  B
) ^ 2 ) )
3228, 31eqtri 2462 . . . . . . . . . . . . . . 15  |-  ( B P ( ( * `
 C ) S B ) )  =  ( C  x.  (
( N `  B
) ^ 2 ) )
3332oveq2i 6121 . . . . . . . . . . . . . 14  |-  ( ( * `  C )  x.  ( B P ( ( * `  C ) S B ) ) )  =  ( ( * `  C )  x.  ( C  x.  ( ( N `  B ) ^ 2 ) ) )
3425, 33eqtri 2462 . . . . . . . . . . . . 13  |-  ( ( ( * `  C
) S B ) P ( ( * `
 C ) S B ) )  =  ( ( * `  C )  x.  ( C  x.  ( ( N `  B ) ^ 2 ) ) )
3534oveq2i 6121 . . . . . . . . . . . 12  |-  ( ( C  x.  ( A P B ) )  -  ( ( ( * `  C ) S B ) P ( ( * `  C ) S B ) ) )  =  ( ( C  x.  ( A P B ) )  -  ( ( * `  C )  x.  ( C  x.  ( ( N `  B ) ^ 2 ) ) ) )
3635oveq2i 6121 . . . . . . . . . . 11  |-  ( ( ( ( N `  A ) ^ 2 )  -  ( ( * `  C )  x.  ( B P A ) ) )  -  ( ( C  x.  ( A P B ) )  -  ( ( ( * `
 C ) S B ) P ( ( * `  C
) S B ) ) ) )  =  ( ( ( ( N `  A ) ^ 2 )  -  ( ( * `  C )  x.  ( B P A ) ) )  -  ( ( C  x.  ( A P B ) )  -  ( ( * `
 C )  x.  ( C  x.  (
( N `  B
) ^ 2 ) ) ) ) )
371, 2, 4, 5nvcli 22180 . . . . . . . . . . . . . 14  |-  ( N `
 A )  e.  RR
3837recni 9133 . . . . . . . . . . . . 13  |-  ( N `
 A )  e.  CC
3938sqcli 11493 . . . . . . . . . . . 12  |-  ( ( N `  A ) ^ 2 )  e.  CC
401, 18dipcl 22242 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  ( B P A )  e.  CC )
414, 8, 5, 40mp3an 1280 . . . . . . . . . . . . 13  |-  ( B P A )  e.  CC
427, 41mulcli 9126 . . . . . . . . . . . 12  |-  ( ( * `  C )  x.  ( B P A ) )  e.  CC
43 sii1.r . . . . . . . . . . . . 13  |-  ( C  x.  ( A P B ) )  e.  RR
4443recni 9133 . . . . . . . . . . . 12  |-  ( C  x.  ( A P B ) )  e.  CC
451, 2, 4, 8nvcli 22180 . . . . . . . . . . . . . . . 16  |-  ( N `
 B )  e.  RR
4645recni 9133 . . . . . . . . . . . . . . 15  |-  ( N `
 B )  e.  CC
4746sqcli 11493 . . . . . . . . . . . . . 14  |-  ( ( N `  B ) ^ 2 )  e.  CC
486, 47mulcli 9126 . . . . . . . . . . . . 13  |-  ( C  x.  ( ( N `
 B ) ^
2 ) )  e.  CC
497, 48mulcli 9126 . . . . . . . . . . . 12  |-  ( ( * `  C )  x.  ( C  x.  ( ( N `  B ) ^ 2 ) ) )  e.  CC
50 sub4 9377 . . . . . . . . . . . 12  |-  ( ( ( ( ( N `
 A ) ^
2 )  e.  CC  /\  ( ( * `  C )  x.  ( B P A ) )  e.  CC )  /\  ( ( C  x.  ( A P B ) )  e.  CC  /\  ( ( * `  C )  x.  ( C  x.  ( ( N `  B ) ^ 2 ) ) )  e.  CC ) )  ->  ( (
( ( N `  A ) ^ 2 )  -  ( ( * `  C )  x.  ( B P A ) ) )  -  ( ( C  x.  ( A P B ) )  -  ( ( * `  C )  x.  ( C  x.  ( ( N `  B ) ^ 2 ) ) ) ) )  =  ( ( ( ( N `  A ) ^ 2 )  -  ( C  x.  ( A P B ) ) )  -  ( ( ( * `  C
)  x.  ( B P A ) )  -  ( ( * `
 C )  x.  ( C  x.  (
( N `  B
) ^ 2 ) ) ) ) ) )
5139, 42, 44, 49, 50mp4an 656 . . . . . . . . . . 11  |-  ( ( ( ( N `  A ) ^ 2 )  -  ( ( * `  C )  x.  ( B P A ) ) )  -  ( ( C  x.  ( A P B ) )  -  ( ( * `  C )  x.  ( C  x.  ( ( N `  B ) ^ 2 ) ) ) ) )  =  ( ( ( ( N `  A ) ^ 2 )  -  ( C  x.  ( A P B ) ) )  -  ( ( ( * `  C
)  x.  ( B P A ) )  -  ( ( * `
 C )  x.  ( C  x.  (
( N `  B
) ^ 2 ) ) ) ) )
5236, 51eqtri 2462 . . . . . . . . . 10  |-  ( ( ( ( N `  A ) ^ 2 )  -  ( ( * `  C )  x.  ( B P A ) ) )  -  ( ( C  x.  ( A P B ) )  -  ( ( ( * `
 C ) S B ) P ( ( * `  C
) S B ) ) ) )  =  ( ( ( ( N `  A ) ^ 2 )  -  ( C  x.  ( A P B ) ) )  -  ( ( ( * `  C
)  x.  ( B P A ) )  -  ( ( * `
 C )  x.  ( C  x.  (
( N `  B
) ^ 2 ) ) ) ) )
535, 11, 53pm3.2i 1133 . . . . . . . . . . . . 13  |-  ( A  e.  X  /\  (
( * `  C
) S B )  e.  X  /\  A  e.  X )
541, 12, 18dipsubdir 22380 . . . . . . . . . . . . 13  |-  ( ( U  e.  CPreHil OLD  /\  ( A  e.  X  /\  ( ( * `  C ) S B )  e.  X  /\  A  e.  X )
)  ->  ( ( A M ( ( * `
 C ) S B ) ) P A )  =  ( ( A P A )  -  ( ( ( * `  C
) S B ) P A ) ) )
553, 53, 54mp2an 655 . . . . . . . . . . . 12  |-  ( ( A M ( ( * `  C ) S B ) ) P A )  =  ( ( A P A )  -  (
( ( * `  C ) S B ) P A ) )
561, 2, 18ipidsq 22240 . . . . . . . . . . . . . 14  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A P A )  =  ( ( N `  A ) ^ 2 ) )
574, 5, 56mp2an 655 . . . . . . . . . . . . 13  |-  ( A P A )  =  ( ( N `  A ) ^ 2 )
587, 8, 53pm3.2i 1133 . . . . . . . . . . . . . 14  |-  ( ( * `  C )  e.  CC  /\  B  e.  X  /\  A  e.  X )
591, 9, 18dipass 22377 . . . . . . . . . . . . . 14  |-  ( ( U  e.  CPreHil OLD  /\  ( ( * `  C )  e.  CC  /\  B  e.  X  /\  A  e.  X )
)  ->  ( (
( * `  C
) S B ) P A )  =  ( ( * `  C )  x.  ( B P A ) ) )
603, 58, 59mp2an 655 . . . . . . . . . . . . 13  |-  ( ( ( * `  C
) S B ) P A )  =  ( ( * `  C )  x.  ( B P A ) )
6157, 60oveq12i 6122 . . . . . . . . . . . 12  |-  ( ( A P A )  -  ( ( ( * `  C ) S B ) P A ) )  =  ( ( ( N `
 A ) ^
2 )  -  (
( * `  C
)  x.  ( B P A ) ) )
6255, 61eqtri 2462 . . . . . . . . . . 11  |-  ( ( A M ( ( * `  C ) S B ) ) P A )  =  ( ( ( N `
 A ) ^
2 )  -  (
( * `  C
)  x.  ( B P A ) ) )
635, 11, 113pm3.2i 1133 . . . . . . . . . . . . 13  |-  ( A  e.  X  /\  (
( * `  C
) S B )  e.  X  /\  (
( * `  C
) S B )  e.  X )
641, 12, 18dipsubdir 22380 . . . . . . . . . . . . 13  |-  ( ( U  e.  CPreHil OLD  /\  ( A  e.  X  /\  ( ( * `  C ) S B )  e.  X  /\  ( ( * `  C ) S B )  e.  X ) )  ->  ( ( A M ( ( * `
 C ) S B ) ) P ( ( * `  C ) S B ) )  =  ( ( A P ( ( * `  C
) S B ) )  -  ( ( ( * `  C
) S B ) P ( ( * `
 C ) S B ) ) ) )
653, 63, 64mp2an 655 . . . . . . . . . . . 12  |-  ( ( A M ( ( * `  C ) S B ) ) P ( ( * `
 C ) S B ) )  =  ( ( A P ( ( * `  C ) S B ) )  -  (
( ( * `  C ) S B ) P ( ( * `  C ) S B ) ) )
665, 6, 83pm3.2i 1133 . . . . . . . . . . . . . 14  |-  ( A  e.  X  /\  C  e.  CC  /\  B  e.  X )
671, 9, 18dipassr2 22379 . . . . . . . . . . . . . 14  |-  ( ( U  e.  CPreHil OLD  /\  ( A  e.  X  /\  C  e.  CC  /\  B  e.  X ) )  ->  ( A P ( ( * `
 C ) S B ) )  =  ( C  x.  ( A P B ) ) )
683, 66, 67mp2an 655 . . . . . . . . . . . . 13  |-  ( A P ( ( * `
 C ) S B ) )  =  ( C  x.  ( A P B ) )
6968oveq1i 6120 . . . . . . . . . . . 12  |-  ( ( A P ( ( * `  C ) S B ) )  -  ( ( ( * `  C ) S B ) P ( ( * `  C ) S B ) ) )  =  ( ( C  x.  ( A P B ) )  -  ( ( ( * `  C
) S B ) P ( ( * `
 C ) S B ) ) )
7065, 69eqtri 2462 . . . . . . . . . . 11  |-  ( ( A M ( ( * `  C ) S B ) ) P ( ( * `
 C ) S B ) )  =  ( ( C  x.  ( A P B ) )  -  ( ( ( * `  C
) S B ) P ( ( * `
 C ) S B ) ) )
7162, 70oveq12i 6122 . . . . . . . . . 10  |-  ( ( ( A M ( ( * `  C
) S B ) ) P A )  -  ( ( A M ( ( * `
 C ) S B ) ) P ( ( * `  C ) S B ) ) )  =  ( ( ( ( N `  A ) ^ 2 )  -  ( ( * `  C )  x.  ( B P A ) ) )  -  ( ( C  x.  ( A P B ) )  -  ( ( ( * `  C ) S B ) P ( ( * `  C ) S B ) ) ) )
727, 41, 48subdii 9513 . . . . . . . . . . 11  |-  ( ( * `  C )  x.  ( ( B P A )  -  ( C  x.  (
( N `  B
) ^ 2 ) ) ) )  =  ( ( ( * `
 C )  x.  ( B P A ) )  -  (
( * `  C
)  x.  ( C  x.  ( ( N `
 B ) ^
2 ) ) ) )
7372oveq2i 6121 . . . . . . . . . 10  |-  ( ( ( ( N `  A ) ^ 2 )  -  ( C  x.  ( A P B ) ) )  -  ( ( * `
 C )  x.  ( ( B P A )  -  ( C  x.  ( ( N `  B ) ^ 2 ) ) ) ) )  =  ( ( ( ( N `  A ) ^ 2 )  -  ( C  x.  ( A P B ) ) )  -  ( ( ( * `  C
)  x.  ( B P A ) )  -  ( ( * `
 C )  x.  ( C  x.  (
( N `  B
) ^ 2 ) ) ) ) )
7452, 71, 733eqtr4i 2472 . . . . . . . . 9  |-  ( ( ( A M ( ( * `  C
) S B ) ) P A )  -  ( ( A M ( ( * `
 C ) S B ) ) P ( ( * `  C ) S B ) ) )  =  ( ( ( ( N `  A ) ^ 2 )  -  ( C  x.  ( A P B ) ) )  -  ( ( * `  C )  x.  ( ( B P A )  -  ( C  x.  (
( N `  B
) ^ 2 ) ) ) ) )
7520, 22, 743eqtr3i 2470 . . . . . . . 8  |-  ( ( N `  ( A M ( ( * `
 C ) S B ) ) ) ^ 2 )  =  ( ( ( ( N `  A ) ^ 2 )  -  ( C  x.  ( A P B ) ) )  -  ( ( * `  C )  x.  ( ( B P A )  -  ( C  x.  (
( N `  B
) ^ 2 ) ) ) ) )
7616, 75breqtri 4260 . . . . . . 7  |-  0  <_  ( ( ( ( N `  A ) ^ 2 )  -  ( C  x.  ( A P B ) ) )  -  ( ( * `  C )  x.  ( ( B P A )  -  ( C  x.  (
( N `  B
) ^ 2 ) ) ) ) )
7741, 48subeq0i 9411 . . . . . . . . . 10  |-  ( ( ( B P A )  -  ( C  x.  ( ( N `
 B ) ^
2 ) ) )  =  0  <->  ( B P A )  =  ( C  x.  ( ( N `  B ) ^ 2 ) ) )
78 oveq2 6118 . . . . . . . . . . 11  |-  ( ( ( B P A )  -  ( C  x.  ( ( N `
 B ) ^
2 ) ) )  =  0  ->  (
( * `  C
)  x.  ( ( B P A )  -  ( C  x.  ( ( N `  B ) ^ 2 ) ) ) )  =  ( ( * `
 C )  x.  0 ) )
797mul01i 9287 . . . . . . . . . . 11  |-  ( ( * `  C )  x.  0 )  =  0
8078, 79syl6eq 2490 . . . . . . . . . 10  |-  ( ( ( B P A )  -  ( C  x.  ( ( N `
 B ) ^
2 ) ) )  =  0  ->  (
( * `  C
)  x.  ( ( B P A )  -  ( C  x.  ( ( N `  B ) ^ 2 ) ) ) )  =  0 )
8177, 80sylbir 206 . . . . . . . . 9  |-  ( ( B P A )  =  ( C  x.  ( ( N `  B ) ^ 2 ) )  ->  (
( * `  C
)  x.  ( ( B P A )  -  ( C  x.  ( ( N `  B ) ^ 2 ) ) ) )  =  0 )
8281oveq2d 6126 . . . . . . . 8  |-  ( ( B P A )  =  ( C  x.  ( ( N `  B ) ^ 2 ) )  ->  (
( ( ( N `
 A ) ^
2 )  -  ( C  x.  ( A P B ) ) )  -  ( ( * `
 C )  x.  ( ( B P A )  -  ( C  x.  ( ( N `  B ) ^ 2 ) ) ) ) )  =  ( ( ( ( N `  A ) ^ 2 )  -  ( C  x.  ( A P B ) ) )  -  0 ) )
8337resqcli 11498 . . . . . . . . . . 11  |-  ( ( N `  A ) ^ 2 )  e.  RR
8483recni 9133 . . . . . . . . . 10  |-  ( ( N `  A ) ^ 2 )  e.  CC
8584, 44subcli 9407 . . . . . . . . 9  |-  ( ( ( N `  A
) ^ 2 )  -  ( C  x.  ( A P B ) ) )  e.  CC
8685subid1i 9403 . . . . . . . 8  |-  ( ( ( ( N `  A ) ^ 2 )  -  ( C  x.  ( A P B ) ) )  -  0 )  =  ( ( ( N `
 A ) ^
2 )  -  ( C  x.  ( A P B ) ) )
8782, 86syl6eq 2490 . . . . . . 7  |-  ( ( B P A )  =  ( C  x.  ( ( N `  B ) ^ 2 ) )  ->  (
( ( ( N `
 A ) ^
2 )  -  ( C  x.  ( A P B ) ) )  -  ( ( * `
 C )  x.  ( ( B P A )  -  ( C  x.  ( ( N `  B ) ^ 2 ) ) ) ) )  =  ( ( ( N `
 A ) ^
2 )  -  ( C  x.  ( A P B ) ) ) )
8876, 87syl5breq 4272 . . . . . 6  |-  ( ( B P A )  =  ( C  x.  ( ( N `  B ) ^ 2 ) )  ->  0  <_  ( ( ( N `
 A ) ^
2 )  -  ( C  x.  ( A P B ) ) ) )
8983, 43subge0i 9611 . . . . . 6  |-  ( 0  <_  ( ( ( N `  A ) ^ 2 )  -  ( C  x.  ( A P B ) ) )  <->  ( C  x.  ( A P B ) )  <_  ( ( N `  A ) ^ 2 ) )
9088, 89sylib 190 . . . . 5  |-  ( ( B P A )  =  ( C  x.  ( ( N `  B ) ^ 2 ) )  ->  ( C  x.  ( A P B ) )  <_ 
( ( N `  A ) ^ 2 ) )
9145resqcli 11498 . . . . . . . 8  |-  ( ( N `  B ) ^ 2 )  e.  RR
9245sqge0i 11500 . . . . . . . 8  |-  0  <_  ( ( N `  B ) ^ 2 )
9391, 92pm3.2i 443 . . . . . . 7  |-  ( ( ( N `  B
) ^ 2 )  e.  RR  /\  0  <_  ( ( N `  B ) ^ 2 ) )
9443, 83, 933pm3.2i 1133 . . . . . 6  |-  ( ( C  x.  ( A P B ) )  e.  RR  /\  (
( N `  A
) ^ 2 )  e.  RR  /\  (
( ( N `  B ) ^ 2 )  e.  RR  /\  0  <_  ( ( N `
 B ) ^
2 ) ) )
95 lemul1a 9895 . . . . . 6  |-  ( ( ( ( C  x.  ( A P B ) )  e.  RR  /\  ( ( N `  A ) ^ 2 )  e.  RR  /\  ( ( ( N `
 B ) ^
2 )  e.  RR  /\  0  <_  ( ( N `  B ) ^ 2 ) ) )  /\  ( C  x.  ( A P B ) )  <_ 
( ( N `  A ) ^ 2 ) )  ->  (
( C  x.  ( A P B ) )  x.  ( ( N `
 B ) ^
2 ) )  <_ 
( ( ( N `
 A ) ^
2 )  x.  (
( N `  B
) ^ 2 ) ) )
9694, 95mpan 653 . . . . 5  |-  ( ( C  x.  ( A P B ) )  <_  ( ( N `
 A ) ^
2 )  ->  (
( C  x.  ( A P B ) )  x.  ( ( N `
 B ) ^
2 ) )  <_ 
( ( ( N `
 A ) ^
2 )  x.  (
( N `  B
) ^ 2 ) ) )
9790, 96syl 16 . . . 4  |-  ( ( B P A )  =  ( C  x.  ( ( N `  B ) ^ 2 ) )  ->  (
( C  x.  ( A P B ) )  x.  ( ( N `
 B ) ^
2 ) )  <_ 
( ( ( N `
 A ) ^
2 )  x.  (
( N `  B
) ^ 2 ) ) )
9838, 46sqmuli 11496 . . . 4  |-  ( ( ( N `  A
)  x.  ( N `
 B ) ) ^ 2 )  =  ( ( ( N `
 A ) ^
2 )  x.  (
( N `  B
) ^ 2 ) )
9997, 98syl6breqr 4277 . . 3  |-  ( ( B P A )  =  ( C  x.  ( ( N `  B ) ^ 2 ) )  ->  (
( C  x.  ( A P B ) )  x.  ( ( N `
 B ) ^
2 ) )  <_ 
( ( ( N `
 A )  x.  ( N `  B
) ) ^ 2 ) )
100 sii1.z . . . . 5  |-  0  <_  ( C  x.  ( A P B ) )
10143, 91mulge0i 9605 . . . . 5  |-  ( ( 0  <_  ( C  x.  ( A P B ) )  /\  0  <_  ( ( N `  B ) ^ 2 ) )  ->  0  <_  ( ( C  x.  ( A P B ) )  x.  ( ( N `  B ) ^ 2 ) ) )
102100, 92, 101mp2an 655 . . . 4  |-  0  <_  ( ( C  x.  ( A P B ) )  x.  ( ( N `  B ) ^ 2 ) )
10337, 45remulcli 9135 . . . . 5  |-  ( ( N `  A )  x.  ( N `  B ) )  e.  RR
104103sqge0i 11500 . . . 4  |-  0  <_  ( ( ( N `
 A )  x.  ( N `  B
) ) ^ 2 )
10543, 91remulcli 9135 . . . . 5  |-  ( ( C  x.  ( A P B ) )  x.  ( ( N `
 B ) ^
2 ) )  e.  RR
106103resqcli 11498 . . . . 5  |-  ( ( ( N `  A
)  x.  ( N `
 B ) ) ^ 2 )  e.  RR
107105, 106sqrlei 12223 . . . 4  |-  ( ( 0  <_  ( ( C  x.  ( A P B ) )  x.  ( ( N `  B ) ^ 2 ) )  /\  0  <_  ( ( ( N `
 A )  x.  ( N `  B
) ) ^ 2 ) )  ->  (
( ( C  x.  ( A P B ) )  x.  ( ( N `  B ) ^ 2 ) )  <_  ( ( ( N `  A )  x.  ( N `  B ) ) ^
2 )  <->  ( sqr `  ( ( C  x.  ( A P B ) )  x.  ( ( N `  B ) ^ 2 ) ) )  <_  ( sqr `  ( ( ( N `
 A )  x.  ( N `  B
) ) ^ 2 ) ) ) )
108102, 104, 107mp2an 655 . . 3  |-  ( ( ( C  x.  ( A P B ) )  x.  ( ( N `
 B ) ^
2 ) )  <_ 
( ( ( N `
 A )  x.  ( N `  B
) ) ^ 2 )  <->  ( sqr `  (
( C  x.  ( A P B ) )  x.  ( ( N `
 B ) ^
2 ) ) )  <_  ( sqr `  (
( ( N `  A )  x.  ( N `  B )
) ^ 2 ) ) )
10999, 108sylib 190 . 2  |-  ( ( B P A )  =  ( C  x.  ( ( N `  B ) ^ 2 ) )  ->  ( sqr `  ( ( C  x.  ( A P B ) )  x.  ( ( N `  B ) ^ 2 ) ) )  <_ 
( sqr `  (
( ( N `  A )  x.  ( N `  B )
) ^ 2 ) ) )
1101, 18dipcl 22242 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A P B )  e.  CC )
1114, 5, 8, 110mp3an 1280 . . . . . 6  |-  ( A P B )  e.  CC
1126, 111mulcomi 9127 . . . . 5  |-  ( C  x.  ( A P B ) )  =  ( ( A P B )  x.  C
)
113112oveq1i 6120 . . . 4  |-  ( ( C  x.  ( A P B ) )  x.  ( ( N `
 B ) ^
2 ) )  =  ( ( ( A P B )  x.  C )  x.  (
( N `  B
) ^ 2 ) )
11491recni 9133 . . . . 5  |-  ( ( N `  B ) ^ 2 )  e.  CC
115111, 6, 114mulassi 9130 . . . 4  |-  ( ( ( A P B )  x.  C )  x.  ( ( N `
 B ) ^
2 ) )  =  ( ( A P B )  x.  ( C  x.  ( ( N `  B ) ^ 2 ) ) )
116113, 115eqtri 2462 . . 3  |-  ( ( C  x.  ( A P B ) )  x.  ( ( N `
 B ) ^
2 ) )  =  ( ( A P B )  x.  ( C  x.  ( ( N `  B ) ^ 2 ) ) )
117116fveq2i 5760 . 2  |-  ( sqr `  ( ( C  x.  ( A P B ) )  x.  ( ( N `  B ) ^ 2 ) ) )  =  ( sqr `  ( ( A P B )  x.  ( C  x.  ( ( N `  B ) ^ 2 ) ) ) )
1181, 2nvge0 22194 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  0  <_  ( N `  A
) )
1194, 5, 118mp2an 655 . . . 4  |-  0  <_  ( N `  A
)
1201, 2nvge0 22194 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  0  <_  ( N `  B
) )
1214, 8, 120mp2an 655 . . . 4  |-  0  <_  ( N `  B
)
12237, 45mulge0i 9605 . . . 4  |-  ( ( 0  <_  ( N `  A )  /\  0  <_  ( N `  B
) )  ->  0  <_  ( ( N `  A )  x.  ( N `  B )
) )
123119, 121, 122mp2an 655 . . 3  |-  0  <_  ( ( N `  A )  x.  ( N `  B )
)
124103sqrsqi 12209 . . 3  |-  ( 0  <_  ( ( N `
 A )  x.  ( N `  B
) )  ->  ( sqr `  ( ( ( N `  A )  x.  ( N `  B ) ) ^
2 ) )  =  ( ( N `  A )  x.  ( N `  B )
) )
125123, 124ax-mp 5 . 2  |-  ( sqr `  ( ( ( N `
 A )  x.  ( N `  B
) ) ^ 2 ) )  =  ( ( N `  A
)  x.  ( N `
 B ) )
126109, 117, 1253brtr3g 4268 1  |-  ( ( B P A )  =  ( C  x.  ( ( N `  B ) ^ 2 ) )  ->  ( sqr `  ( ( A P B )  x.  ( C  x.  (
( N `  B
) ^ 2 ) ) ) )  <_ 
( ( N `  A )  x.  ( N `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727   class class class wbr 4237   ` cfv 5483  (class class class)co 6110   CCcc 9019   RRcr 9020   0cc0 9021    x. cmul 9026    <_ cle 9152    - cmin 9322   2c2 10080   ^cexp 11413   *ccj 11932   sqrcsqr 12069   NrmCVeccnv 22094   BaseSetcba 22096   .s OLDcns 22097   -vcnsb 22099   normCVcnmcv 22100   .i OLDcdip 22227   CPreHil OLDccphlo 22344
This theorem is referenced by:  siilem2  22384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-inf2 7625  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099  ax-addf 9100  ax-mulf 9101
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-iin 4120  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-se 4571  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-isom 5492  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-of 6334  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-2o 6754  df-oadd 6757  df-er 6934  df-map 7049  df-ixp 7093  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-fi 7445  df-sup 7475  df-oi 7508  df-card 7857  df-cda 8079  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-4 10091  df-5 10092  df-6 10093  df-7 10094  df-8 10095  df-9 10096  df-10 10097  df-n0 10253  df-z 10314  df-dec 10414  df-uz 10520  df-q 10606  df-rp 10644  df-xneg 10741  df-xadd 10742  df-xmul 10743  df-ioo 10951  df-icc 10954  df-fz 11075  df-fzo 11167  df-seq 11355  df-exp 11414  df-hash 11650  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-clim 12313  df-sum 12511  df-struct 13502  df-ndx 13503  df-slot 13504  df-base 13505  df-sets 13506  df-ress 13507  df-plusg 13573  df-mulr 13574  df-starv 13575  df-sca 13576  df-vsca 13577  df-tset 13579  df-ple 13580  df-ds 13582  df-unif 13583  df-hom 13584  df-cco 13585  df-rest 13681  df-topn 13682  df-topgen 13698  df-pt 13699  df-prds 13702  df-xrs 13757  df-0g 13758  df-gsum 13759  df-qtop 13764  df-imas 13765  df-xps 13767  df-mre 13842  df-mrc 13843  df-acs 13845  df-mnd 14721  df-submnd 14770  df-mulg 14846  df-cntz 15147  df-cmn 15445  df-psmet 16725  df-xmet 16726  df-met 16727  df-bl 16728  df-mopn 16729  df-cnfld 16735  df-top 16994  df-bases 16996  df-topon 16997  df-topsp 16998  df-cld 17114  df-ntr 17115  df-cls 17116  df-cn 17322  df-cnp 17323  df-t1 17409  df-haus 17410  df-tx 17625  df-hmeo 17818  df-xms 18381  df-ms 18382  df-tms 18383  df-grpo 21810  df-gid 21811  df-ginv 21812  df-gdiv 21813  df-ablo 21901  df-vc 22056  df-nv 22102  df-va 22105  df-ba 22106  df-sm 22107  df-0v 22108  df-vs 22109  df-nmcv 22110  df-ims 22111  df-dip 22228  df-ph 22345
  Copyright terms: Public domain W3C validator