MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-4l Unicode version

Theorem simp-4l 742
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
simp-4l  |-  ( ( ( ( ( ph  /\ 
ps )  /\  ch )  /\  th )  /\  ta )  ->  ph )

Proof of Theorem simp-4l
StepHypRef Expression
1 simplll 734 . 2  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  ->  ph )
21adantr 451 1  |-  ( ( ( ( ( ph  /\ 
ps )  /\  ch )  /\  th )  /\  ta )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358
This theorem is referenced by:  simp-5l  744  xrofsup  23255  sqsscirc1  23292  lmxrge0  23375  lmdvg  23376  esumcvg  23454  climsuse  27734  wallispilem3  27816
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator