MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp111 Unicode version

Theorem simp111 1086
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp111  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ph )

Proof of Theorem simp111
StepHypRef Expression
1 simp11 987 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ph )
213ad2ant1 978 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936
This theorem is referenced by:  tsmsxp  18106  ps-2b  29597  llncvrlpln2  29672  4atlem11b  29723  4atlem12b  29726  lplncvrlvol2  29730  lneq2at  29893  2lnat  29899  cdlemblem  29908  4atexlemex6  30189  cdleme24  30467  cdleme26ee  30475  cdlemg2idN  30711  cdlemg31c  30814  cdlemk26-3  31021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator