MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp111 Unicode version

Theorem simp111 1084
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp111  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ph )

Proof of Theorem simp111
StepHypRef Expression
1 simp11 985 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ph )
213ad2ant1 976 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  tsmsxp  17853  prdnei  25676  ps-2b  30293  llncvrlpln2  30368  4atlem11b  30419  4atlem12b  30422  lplncvrlvol2  30426  lneq2at  30589  2lnat  30595  cdlemblem  30604  4atexlemex6  30885  cdleme24  31163  cdleme26ee  31171  cdlemg2idN  31407  cdlemg31c  31510  cdlemk26-3  31717
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator