MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp113 Structured version   Unicode version

Theorem simp113 1089
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp113  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ch )

Proof of Theorem simp113
StepHypRef Expression
1 simp13 990 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ch )
213ad2ant1 979 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937
This theorem is referenced by:  axcontlem4  25908  llncvrlpln2  30416  4atlem12b  30470  2lnat  30643  cdlemblem  30652  4atexlemex6  30933  cdleme24  31211  cdleme26ee  31219  cdlemg2idN  31455  dihglblem2N  32154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator