MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp131 Structured version   Unicode version

Theorem simp131 1092
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp131  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ph )

Proof of Theorem simp131
StepHypRef Expression
1 simp31 993 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ph )
213ad2ant1 978 1  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936
This theorem is referenced by:  ax5seglem3  25862  exatleN  30138  3atlem1  30217  3atlem2  30218  3atlem5  30221  2llnjaN  30300  4atlem11b  30342  4atlem12b  30345  lplncvrlvol2  30349  dalemsea  30363  dath2  30471  cdlemblem  30527  dalawlem1  30605  lhpexle3lem  30745  4atexlemex6  30808  cdleme22f2  31081  cdleme22g  31082  cdlemg7aN  31359  cdlemg34  31446  cdlemj1  31555  cdlemk23-3  31636  cdlemk25-3  31638  cdlemk26b-3  31639  cdleml3N  31712
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator