MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp131 Unicode version

Theorem simp131 1092
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp131  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ph )

Proof of Theorem simp131
StepHypRef Expression
1 simp31 993 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ph )
213ad2ant1 978 1  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936
This theorem is referenced by:  ax5seglem3  25586  exatleN  29520  3atlem1  29599  3atlem2  29600  3atlem5  29603  2llnjaN  29682  4atlem11b  29724  4atlem12b  29727  lplncvrlvol2  29731  dalemsea  29745  dath2  29853  cdlemblem  29909  dalawlem1  29987  lhpexle3lem  30127  4atexlemex6  30190  cdleme22f2  30463  cdleme22g  30464  cdlemg7aN  30741  cdlemg34  30828  cdlemj1  30937  cdlemk23-3  31018  cdlemk25-3  31020  cdlemk26b-3  31021  cdleml3N  31094
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator