MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp131 Unicode version

Theorem simp131 1090
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp131  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ph )

Proof of Theorem simp131
StepHypRef Expression
1 simp31 991 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ph )
213ad2ant1 976 1  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  ax5seglem3  24559  exatleN  29593  3atlem1  29672  3atlem2  29673  3atlem5  29676  2llnjaN  29755  4atlem11b  29797  4atlem12b  29800  lplncvrlvol2  29804  dalemsea  29818  dath2  29926  cdlemblem  29982  dalawlem1  30060  lhpexle3lem  30200  4atexlemex6  30263  cdleme22f2  30536  cdleme22g  30537  cdlemg7aN  30814  cdlemg34  30901  cdlemj1  31010  cdlemk23-3  31091  cdlemk25-3  31093  cdlemk26b-3  31094  cdleml3N  31167
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator