MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp131 Unicode version

Theorem simp131 1090
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp131  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ph )

Proof of Theorem simp131
StepHypRef Expression
1 simp31 991 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ph )
213ad2ant1 976 1  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  ax5seglem3  24631  exatleN  30215  3atlem1  30294  3atlem2  30295  3atlem5  30298  2llnjaN  30377  4atlem11b  30419  4atlem12b  30422  lplncvrlvol2  30426  dalemsea  30440  dath2  30548  cdlemblem  30604  dalawlem1  30682  lhpexle3lem  30822  4atexlemex6  30885  cdleme22f2  31158  cdleme22g  31159  cdlemg7aN  31436  cdlemg34  31523  cdlemj1  31632  cdlemk23-3  31713  cdlemk25-3  31715  cdlemk26b-3  31716  cdleml3N  31789
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator