MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp132 Structured version   Unicode version

Theorem simp132 1093
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp132  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ps )

Proof of Theorem simp132
StepHypRef Expression
1 simp32 994 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ps )
213ad2ant1 978 1  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936
This theorem is referenced by:  ax5seglem3  25862  3atlem1  30207  3atlem2  30208  3atlem5  30211  2llnjaN  30290  4atlem11b  30332  4atlem12b  30335  lplncvrlvol2  30339  dalemtea  30354  dath2  30461  cdlemblem  30517  dalawlem1  30595  lhpexle3lem  30735  4atexlemex6  30798  cdleme22f2  31071  cdleme22g  31072  cdlemg7aN  31349  cdlemg34  31436  cdlemj1  31545  cdlemk23-3  31626  cdlemk25-3  31628  cdlemk26b-3  31629
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator