MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp133 Unicode version

Theorem simp133 1092
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp133  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ch )

Proof of Theorem simp133
StepHypRef Expression
1 simp33 993 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ch )
213ad2ant1 976 1  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  tsmsxp  17853  ax5seglem3  24631  exatleN  30215  3atlem1  30294  3atlem2  30295  3atlem6  30299  4atlem11b  30419  4atlem12b  30422  lplncvrlvol2  30426  dalemuea  30442  dath2  30548  4atexlemex6  30885  cdleme22f2  31158  cdleme22g  31159  cdlemg7aN  31436  cdlemg31c  31510  cdlemg36  31525  cdlemj1  31632  cdlemj2  31633  cdlemk23-3  31713  cdlemk26b-3  31716
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator