MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp133 Unicode version

Theorem simp133 1092
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp133  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ch )

Proof of Theorem simp133
StepHypRef Expression
1 simp33 993 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ch )
213ad2ant1 976 1  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  tsmsxp  17837  ax5seglem3  24559  exatleN  29593  3atlem1  29672  3atlem2  29673  3atlem6  29677  4atlem11b  29797  4atlem12b  29800  lplncvrlvol2  29804  dalemuea  29820  dath2  29926  4atexlemex6  30263  cdleme22f2  30536  cdleme22g  30537  cdlemg7aN  30814  cdlemg31c  30888  cdlemg36  30903  cdlemj1  31010  cdlemj2  31011  cdlemk23-3  31091  cdlemk26b-3  31094
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator