MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp133 Unicode version

Theorem simp133 1094
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp133  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ch )

Proof of Theorem simp133
StepHypRef Expression
1 simp33 995 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ch )
213ad2ant1 978 1  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936
This theorem is referenced by:  tsmsxp  18106  ax5seglem3  25585  exatleN  29519  3atlem1  29598  3atlem2  29599  3atlem6  29603  4atlem11b  29723  4atlem12b  29726  lplncvrlvol2  29730  dalemuea  29746  dath2  29852  4atexlemex6  30189  cdleme22f2  30462  cdleme22g  30463  cdlemg7aN  30740  cdlemg31c  30814  cdlemg36  30829  cdlemj1  30936  cdlemj2  30937  cdlemk23-3  31017  cdlemk26b-3  31020
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator