MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp133 Structured version   Unicode version

Theorem simp133 1094
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp133  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ch )

Proof of Theorem simp133
StepHypRef Expression
1 simp33 995 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ch )
213ad2ant1 978 1  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936
This theorem is referenced by:  tsmsxp  18176  ax5seglem3  25862  exatleN  30138  3atlem1  30217  3atlem2  30218  3atlem6  30222  4atlem11b  30342  4atlem12b  30345  lplncvrlvol2  30349  dalemuea  30365  dath2  30471  4atexlemex6  30808  cdleme22f2  31081  cdleme22g  31082  cdlemg7aN  31359  cdlemg31c  31433  cdlemg36  31448  cdlemj1  31555  cdlemj2  31556  cdlemk23-3  31636  cdlemk26b-3  31639
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator