MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1i Unicode version

Theorem simp1i 964
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1  |-  ( ph  /\ 
ps  /\  ch )
Assertion
Ref Expression
simp1i  |-  ph

Proof of Theorem simp1i
StepHypRef Expression
1 3simp1i.1 . 2  |-  ( ph  /\ 
ps  /\  ch )
2 simp1 955 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  ph )
31, 2ax-mp 8 1  |-  ph
Colors of variables: wff set class
Syntax hints:    /\ w3a 934
This theorem is referenced by:  find  4697  hartogslem2  7274  harwdom  7320  divalglem6  12613  structfn  13177  strleun  13254  birthday  20265  divsqrsumf  20291  emcl  20312  lgslem4  20554  lgscllem  20558  lgsdir2lem2  20579  mulog2sumlem1  20699  siilem2  21446  h2hva  21570  h2hsm  21571  elunop2  22609  wallispilem3  27919  wallispilem4  27920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator