MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1i Unicode version

Theorem simp1i 964
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1  |-  ( ph  /\ 
ps  /\  ch )
Assertion
Ref Expression
simp1i  |-  ph

Proof of Theorem simp1i
StepHypRef Expression
1 3simp1i.1 . 2  |-  ( ph  /\ 
ps  /\  ch )
2 simp1 955 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  ph )
31, 2ax-mp 8 1  |-  ph
Colors of variables: wff set class
Syntax hints:    /\ w3a 934
This theorem is referenced by:  find  4681  hartogslem2  7258  harwdom  7304  divalglem6  12597  structfn  13161  strleun  13238  birthday  20249  divsqrsumf  20275  emcl  20296  lgslem4  20538  lgscllem  20542  lgsdir2lem2  20563  mulog2sumlem1  20683  siilem2  21430  h2hva  21554  h2hsm  21555  elunop2  22593  wallispilem3  27816  wallispilem4  27817
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator