MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l3 Unicode version

Theorem simp1l3 1050
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l3  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th )  /\  ta  /\  et )  ->  ch )

Proof of Theorem simp1l3
StepHypRef Expression
1 simpl3 960 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ch )
213ad2ant1 976 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th )  /\  ta  /\  et )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  btwnconn1lem7  24788  btwnconn1lem12  24793  linethru  24848  hlrelat3  30223  cvrval3  30224  2atlt  30250  atbtwnex  30259  1cvratlt  30285  2llnmat  30335  lplnexllnN  30375  4atlem11  30420  lnjatN  30591  lncvrat  30593  lncmp  30594  cdlemd9  31017  dihord5b  32071  dihmeetALTN  32139  dih1dimatlem0  32140  mapdrvallem2  32457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator