MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1lr Structured version   Unicode version

Theorem simp1lr 1021
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1lr  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th  /\  ta )  ->  ps )

Proof of Theorem simp1lr
StepHypRef Expression
1 simplr 732 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  ps )
213ad2ant1 978 1  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th  /\  ta )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936
This theorem is referenced by:  lspsolvlem  16214  measinblem  24574  ax5seg  25877  btwnconn1lem13  26033  pellex  26898  athgt  30253  llnle  30315  lplnle  30337  lhpexle1  30805  lhpat3  30843  tendoicl  31593  cdlemk55b  31757
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator