MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1lr Unicode version

Theorem simp1lr 1019
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1lr  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th  /\  ta )  ->  ps )

Proof of Theorem simp1lr
StepHypRef Expression
1 simplr 731 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  ps )
213ad2ant1 976 1  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th  /\  ta )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  lspsolvlem  15911  measinblem  23562  ax5seg  24638  btwnconn1lem13  24794  pellex  27023  athgt  30267  llnle  30329  lplnle  30351  lhpexle1  30819  lhpat3  30857  tendoicl  31607  cdlemk55b  31771
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator