MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1r1 Structured version   Unicode version

Theorem simp1r1 1054
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1r1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta  /\  et )  ->  ph )

Proof of Theorem simp1r1
StepHypRef Expression
1 simpr1 964 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ph )
213ad2ant1 979 1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta  /\  et )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937
This theorem is referenced by:  trisegint  25993  lshpkrlem6  30011  atbtwnexOLDN  30342  atbtwnex  30343  3dim3  30364  3atlem5  30382  4atlem11  30504  4atexlem7  30970  cdleme22b  31236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator