MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1r1 Unicode version

Theorem simp1r1 1051
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1r1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta  /\  et )  ->  ph )

Proof of Theorem simp1r1
StepHypRef Expression
1 simpr1 961 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ph )
213ad2ant1 976 1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta  /\  et )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  trisegint  25210  lshpkrlem6  29374  atbtwnexOLDN  29705  atbtwnex  29706  3dim3  29727  3atlem5  29745  4atlem11  29867  4atexlem7  30333  cdleme22b  30599
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator