MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp211 Unicode version

Theorem simp211 1093
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp211  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ph )

Proof of Theorem simp211
StepHypRef Expression
1 simp11 985 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ph )
213ad2ant2 977 1  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  cdleme27a  31178  cdlemk5u  31672  cdlemk6u  31673  cdlemk7u  31681  cdlemk11u  31682  cdlemk12u  31683  cdlemk7u-2N  31699  cdlemk11u-2N  31700  cdlemk12u-2N  31701  cdlemk20-2N  31703  cdlemk22  31704  cdlemk33N  31720  cdlemk53b  31767  cdlemk53  31768  cdlemk55a  31770  cdlemkyyN  31773  cdlemk43N  31774
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator