MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp212 Unicode version

Theorem simp212 1096
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp212  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ps )

Proof of Theorem simp212
StepHypRef Expression
1 simp12 988 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ps )
213ad2ant2 979 1  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936
This theorem is referenced by:  cdleme27a  30483  cdlemk5u  30977  cdlemk6u  30978  cdlemk7u  30986  cdlemk11u  30987  cdlemk12u  30988  cdlemk7u-2N  31004  cdlemk11u-2N  31005  cdlemk12u-2N  31006  cdlemk20-2N  31008  cdlemk22  31009  cdlemk22-3  31017  cdlemk33N  31025  cdlemk53b  31072  cdlemk53  31073  cdlemk55a  31075  cdlemkyyN  31078  cdlemk43N  31079
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator