MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp213 Unicode version

Theorem simp213 1095
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp213  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ch )

Proof of Theorem simp213
StepHypRef Expression
1 simp13 987 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ch )
213ad2ant2 977 1  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  cdleme27a  30374  cdlemk5u  30868  cdlemk6u  30869  cdlemk7u  30877  cdlemk11u  30878  cdlemk12u  30879  cdlemk7u-2N  30895  cdlemk11u-2N  30896  cdlemk12u-2N  30897  cdlemk20-2N  30899  cdlemk22  30900  cdlemk22-3  30908  cdlemk33N  30916  cdlemk53b  30963  cdlemk53  30964  cdlemk55a  30966  cdlemkyyN  30969  cdlemk43N  30970
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator