MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp213 Unicode version

Theorem simp213 1095
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp213  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ch )

Proof of Theorem simp213
StepHypRef Expression
1 simp13 987 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ch )
213ad2ant2 977 1  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  cdleme27a  30556  cdlemk5u  31050  cdlemk6u  31051  cdlemk7u  31059  cdlemk11u  31060  cdlemk12u  31061  cdlemk7u-2N  31077  cdlemk11u-2N  31078  cdlemk12u-2N  31079  cdlemk20-2N  31081  cdlemk22  31082  cdlemk22-3  31090  cdlemk33N  31098  cdlemk53b  31145  cdlemk53  31146  cdlemk55a  31148  cdlemkyyN  31151  cdlemk43N  31152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator