MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp222 Structured version   Unicode version

Theorem simp222 1099
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp222  |-  ( ( et  /\  ( th 
/\  ( ph  /\  ps  /\  ch )  /\  ta )  /\  ze )  ->  ps )

Proof of Theorem simp222
StepHypRef Expression
1 simp22 991 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta )  ->  ps )
213ad2ant2 979 1  |-  ( ( et  /\  ( th 
/\  ( ph  /\  ps  /\  ch )  /\  ta )  /\  ze )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936
This theorem is referenced by:  cdleme26eALTN  31158  cdleme27a  31164  cdlemk23-3  31699  cdlemk25-3  31701  cdlemk27-3  31704
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator