MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp232 Unicode version

Theorem simp232 1100
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp232  |-  ( ( et  /\  ( th 
/\  ta  /\  ( ph  /\  ps  /\  ch ) )  /\  ze )  ->  ps )

Proof of Theorem simp232
StepHypRef Expression
1 simp32 992 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ps )
213ad2ant2 977 1  |-  ( ( et  /\  ( th 
/\  ta  /\  ( ph  /\  ps  /\  ch ) )  /\  ze )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  cdlemd3  30389  cdleme21ct  30518  cdleme21e  30520  cdleme21f  30521  cdleme21i  30524  cdleme26eALTN  30550  cdlemk23-3  31091  cdlemk25-3  31093
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator