MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp232 Structured version   Unicode version

Theorem simp232 1103
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp232  |-  ( ( et  /\  ( th 
/\  ta  /\  ( ph  /\  ps  /\  ch ) )  /\  ze )  ->  ps )

Proof of Theorem simp232
StepHypRef Expression
1 simp32 995 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ps )
213ad2ant2 980 1  |-  ( ( et  /\  ( th 
/\  ta  /\  ( ph  /\  ps  /\  ch ) )  /\  ze )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937
This theorem is referenced by:  cdlemd3  31059  cdleme21ct  31188  cdleme21e  31190  cdleme21f  31191  cdleme21i  31194  cdleme26eALTN  31220  cdlemk23-3  31761  cdlemk25-3  31763
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator