MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2i Unicode version

Theorem simp2i 965
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
Hypothesis
Ref Expression
3simp1i.1  |-  ( ph  /\ 
ps  /\  ch )
Assertion
Ref Expression
simp2i  |-  ps

Proof of Theorem simp2i
StepHypRef Expression
1 3simp1i.1 . 2  |-  ( ph  /\ 
ps  /\  ch )
2 simp2 956 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  ps )
31, 2ax-mp 8 1  |-  ps
Colors of variables: wff set class
Syntax hints:    /\ w3a 934
This theorem is referenced by:  hartogslem2  7258  harwdom  7304  divalglem6  12597  strleun  13238  birthdaylem3  20248  birthday  20249  divsqrsum  20276  harmonicbnd  20297  lgslem4  20538  lgscllem  20542  lgsdir2lem2  20563  mulog2sum  20686  vmalogdivsum2  20687  siilem2  21430  h2hva  21554  h2hsm  21555  hhssabloi  21839  elunop2  22593  rrisgrp  25338  wallispilem3  27816  wallispilem4  27817
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator