MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2l1 Unicode version

Theorem simp2l1 1056
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2l1  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th )  /\  et )  ->  ph )

Proof of Theorem simp2l1
StepHypRef Expression
1 simpl1 960 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ph )
213ad2ant2 979 1  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th )  /\  et )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936
This theorem is referenced by:  btwnconn1lem8  25735  btwnconn1lem11  25738  btwnconn1lem12  25739  jm2.27  26763  2lplnja  29784  cdlemk21-2N  31056  cdlemk19xlem  31107
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator