MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2l2 Unicode version

Theorem simp2l2 1055
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2l2  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th )  /\  et )  ->  ps )

Proof of Theorem simp2l2
StepHypRef Expression
1 simpl2 959 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ps )
213ad2ant2 977 1  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th )  /\  et )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  btwnconn1lem9  24790  btwnconn1lem10  24791  btwnconn1lem11  24792  btwnconn1lem12  24793  limptlimpr2lem1  25677  jm2.27  27204  2lplnja  30430  cdlemk21-2N  31702  cdlemk31  31707  cdlemk19xlem  31753
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator