MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2l3 Structured version   Unicode version

Theorem simp2l3 1059
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2l3  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th )  /\  et )  ->  ch )

Proof of Theorem simp2l3
StepHypRef Expression
1 simpl3 963 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ch )
213ad2ant2 980 1  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th )  /\  et )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937
This theorem is referenced by:  btwnconn1lem8  26033  btwnconn1lem12  26037  jm2.27  27093  2lplnja  30490  cdlemk21-2N  31762  cdlemk19xlem  31813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator