MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2r2 Unicode version

Theorem simp2r2 1058
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2r2  |-  ( ( ta  /\  ( th 
/\  ( ph  /\  ps  /\  ch ) )  /\  et )  ->  ps )

Proof of Theorem simp2r2
StepHypRef Expression
1 simpr2 962 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ps )
213ad2ant2 977 1  |-  ( ( ta  /\  ( th 
/\  ( ph  /\  ps  /\  ch ) )  /\  et )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  btwnconn1lem12  24721  jm2.27  27101  cdlemj3  31012
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator