MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2r3 Structured version   Unicode version

Theorem simp2r3 1061
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2r3  |-  ( ( ta  /\  ( th 
/\  ( ph  /\  ps  /\  ch ) )  /\  et )  ->  ch )

Proof of Theorem simp2r3
StepHypRef Expression
1 simpr3 965 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ch )
213ad2ant2 979 1  |-  ( ( ta  /\  ( th 
/\  ( ph  /\  ps  /\  ch ) )  /\  et )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936
This theorem is referenced by:  btwnconn1lem8  26020  btwnconn1lem9  26021  btwnconn1lem10  26022  btwnconn1lem11  26023  btwnconn1lem12  26024  jm2.27  27060  cdlemj3  31547
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator