MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp311 Unicode version

Theorem simp311 1102
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp311  |-  ( ( et  /\  ze  /\  ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta ) )  ->  ph )

Proof of Theorem simp311
StepHypRef Expression
1 simp11 985 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ph )
213ad2ant3 978 1  |-  ( ( et  /\  ze  /\  ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta ) )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  dalem-clpjq  29826  dath2  29926  cdleme26e  30548  cdleme38m  30652  cdleme38n  30653  cdleme39n  30655  cdlemg28b  30892  cdlemk7  31037  cdlemk11  31038  cdlemk12  31039  cdlemk7u  31059  cdlemk11u  31060  cdlemk12u  31061  cdlemk22  31082  cdlemk23-3  31091  cdlemk25-3  31093
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator