MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp311 Structured version   Unicode version

Theorem simp311 1105
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp311  |-  ( ( et  /\  ze  /\  ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta ) )  ->  ph )

Proof of Theorem simp311
StepHypRef Expression
1 simp11 988 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ph )
213ad2ant3 981 1  |-  ( ( et  /\  ze  /\  ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta ) )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937
This theorem is referenced by:  dalem-clpjq  30496  dath2  30596  cdleme26e  31218  cdleme38m  31322  cdleme38n  31323  cdleme39n  31325  cdlemg28b  31562  cdlemk7  31707  cdlemk11  31708  cdlemk12  31709  cdlemk7u  31729  cdlemk11u  31730  cdlemk12u  31731  cdlemk22  31752  cdlemk23-3  31761  cdlemk25-3  31763
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator