MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp313 Structured version   Unicode version

Theorem simp313 1107
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp313  |-  ( ( et  /\  ze  /\  ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta ) )  ->  ch )

Proof of Theorem simp313
StepHypRef Expression
1 simp13 990 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ch )
213ad2ant3 981 1  |-  ( ( et  /\  ze  /\  ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta ) )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937
This theorem is referenced by:  dalemrot  30456  dalem5  30466  dalem-cly  30470  dath2  30536  cdleme26e  31158  cdleme38m  31262  cdleme38n  31263  cdlemg28b  31502  cdlemg28  31503  cdlemk7  31647  cdlemk11  31648  cdlemk12  31649  cdlemk7u  31669  cdlemk11u  31670  cdlemk12u  31671  cdlemk22  31692  cdlemk23-3  31701  cdlemk25-3  31703
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator