MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp322 Unicode version

Theorem simp322 1106
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp322  |-  ( ( et  /\  ze  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta ) )  ->  ps )

Proof of Theorem simp322
StepHypRef Expression
1 simp22 989 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta )  ->  ps )
213ad2ant3 978 1  |-  ( ( et  /\  ze  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta ) )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  dalemqnet  29841  dalemrot  29846  dath2  29926  cdleme18d  30484  cdleme20i  30506  cdleme20j  30507  cdleme20l2  30510  cdleme20l  30511  cdleme20m  30512  cdleme20  30513  cdleme21j  30525  cdleme22eALTN  30534  cdleme26eALTN  30550  cdlemk16a  31045  cdlemk12u-2N  31079  cdlemk21-2N  31080  cdlemk22  31082  cdlemk31  31085  cdlemk32  31086  cdlemk11ta  31118  cdlemk11tc  31134
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator