MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp322 Structured version   Unicode version

Theorem simp322 1109
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp322  |-  ( ( et  /\  ze  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta ) )  ->  ps )

Proof of Theorem simp322
StepHypRef Expression
1 simp22 992 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta )  ->  ps )
213ad2ant3 981 1  |-  ( ( et  /\  ze  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta ) )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937
This theorem is referenced by:  dalemqnet  30511  dalemrot  30516  dath2  30596  cdleme18d  31154  cdleme20i  31176  cdleme20j  31177  cdleme20l2  31180  cdleme20l  31181  cdleme20m  31182  cdleme20  31183  cdleme21j  31195  cdleme22eALTN  31204  cdleme26eALTN  31220  cdlemk16a  31715  cdlemk12u-2N  31749  cdlemk21-2N  31750  cdlemk22  31752  cdlemk31  31755  cdlemk32  31756  cdlemk11ta  31788  cdlemk11tc  31804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator