MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp331 Structured version   Unicode version

Theorem simp331 1111
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp331  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ph )

Proof of Theorem simp331
StepHypRef Expression
1 simp31 994 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ph )
213ad2ant3 981 1  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937
This theorem is referenced by:  ivthALT  26339  dalemclpjs  30432  dath2  30535  cdlema1N  30589  cdlemk7u  31668  cdlemk11u  31669  cdlemk12u  31670  cdlemk22  31691  cdlemk23-3  31700  cdlemk24-3  31701  cdlemk33N  31707  cdlemk11ta  31727  cdlemk11tc  31743  cdlemk54  31756
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator