MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp331 Unicode version

Theorem simp331 1108
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp331  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ph )

Proof of Theorem simp331
StepHypRef Expression
1 simp31 991 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ph )
213ad2ant3 978 1  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  ivthALT  26361  dalemclpjs  30445  dath2  30548  cdlema1N  30602  cdlemk7u  31681  cdlemk11u  31682  cdlemk12u  31683  cdlemk22  31704  cdlemk23-3  31713  cdlemk24-3  31714  cdlemk33N  31720  cdlemk11ta  31740  cdlemk11tc  31756  cdlemk54  31769
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator