MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp333 Unicode version

Theorem simp333 1110
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp333  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ch )

Proof of Theorem simp333
StepHypRef Expression
1 simp33 993 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ch )
213ad2ant3 978 1  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934
This theorem is referenced by:  ivthALT  26258  dalemclrju  29825  dath2  29926  cdlema1N  29980  cdleme26eALTN  30550  cdlemk7u  31059  cdlemk11u  31060  cdlemk12u  31061  cdlemk22  31082  cdlemk23-3  31091  cdlemk33N  31098  cdlemk11ta  31118  cdlemk11tc  31134  cdlemk54  31147
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator