MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp333 Structured version   Unicode version

Theorem simp333 1113
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp333  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ch )

Proof of Theorem simp333
StepHypRef Expression
1 simp33 996 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ch )
213ad2ant3 981 1  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937
This theorem is referenced by:  ivthALT  26376  dalemclrju  30531  dath2  30632  cdlema1N  30686  cdleme26eALTN  31256  cdlemk7u  31765  cdlemk11u  31766  cdlemk12u  31767  cdlemk22  31788  cdlemk23-3  31797  cdlemk33N  31804  cdlemk11ta  31824  cdlemk11tc  31840  cdlemk54  31853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator