MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3l2 Unicode version

Theorem simp3l2 1061
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3l2  |-  ( ( ta  /\  et  /\  ( ( ph  /\  ps  /\  ch )  /\  th ) )  ->  ps )

Proof of Theorem simp3l2
StepHypRef Expression
1 simpl2 959 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ps )
213ad2ant3 978 1  |-  ( ( ta  /\  et  /\  ( ( ph  /\  ps  /\  ch )  /\  th ) )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  cvmlift2lem10  23858  cdleme36m  31272  cdlemk5u  31672  cdlemk6u  31673  cdlemk21N  31684  cdlemk20  31685  cdlemk27-3  31718  cdlemk28-3  31719
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator