MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3l2 Structured version   Unicode version

Theorem simp3l2 1064
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3l2  |-  ( ( ta  /\  et  /\  ( ( ph  /\  ps  /\  ch )  /\  th ) )  ->  ps )

Proof of Theorem simp3l2
StepHypRef Expression
1 simpl2 962 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ps )
213ad2ant3 981 1  |-  ( ( ta  /\  et  /\  ( ( ph  /\  ps  /\  ch )  /\  th ) )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937
This theorem is referenced by:  cvmlift2lem10  25004  cdleme36m  31332  cdlemk5u  31732  cdlemk6u  31733  cdlemk21N  31744  cdlemk20  31745  cdlemk27-3  31778  cdlemk28-3  31779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939
  Copyright terms: Public domain W3C validator