MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3l3 Structured version   Unicode version

Theorem simp3l3 1064
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3l3  |-  ( ( ta  /\  et  /\  ( ( ph  /\  ps  /\  ch )  /\  th ) )  ->  ch )

Proof of Theorem simp3l3
StepHypRef Expression
1 simpl3 962 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ch )
213ad2ant3 980 1  |-  ( ( ta  /\  et  /\  ( ( ph  /\  ps  /\  ch )  /\  th ) )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936
This theorem is referenced by:  cvmlift2lem10  24999  cdleme36m  31258  cdlemk5u  31658  cdlemk21N  31670  cdlemk20  31671  cdlemk27-3  31704  cdlemk28-3  31705  dihmeetlem20N  32124
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator