MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r1 Unicode version

Theorem simp3r1 1063
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r1  |-  ( ( ta  /\  et  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )
) )  ->  ph )

Proof of Theorem simp3r1
StepHypRef Expression
1 simpr1 961 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ph )
213ad2ant3 978 1  |-  ( ( ta  /\  et  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )
) )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  nllyrest  17228  segletr  24809  stoweidlem56  27908  cdlemblem  30604  cdleme21  31148  cdleme22b  31152  cdleme40m  31278  cdlemg34  31523  cdlemk5u  31672  cdlemk6u  31673  cdlemk21N  31684  cdlemk20  31685  cdlemk26b-3  31716  cdlemk26-3  31717  cdlemk28-3  31719  cdlemk37  31725  cdlemky  31737  cdlemk11t  31757  cdlemkyyN  31773  dihmeetlem20N  32138
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator