MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r3 Unicode version

Theorem simp3r3 1065
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r3  |-  ( ( ta  /\  et  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )
) )  ->  ch )

Proof of Theorem simp3r3
StepHypRef Expression
1 simpr3 963 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ch )
213ad2ant3 978 1  |-  ( ( ta  /\  et  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )
) )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  nllyrest  17268  stoweidlem56  26953  cdlemblem  29800  cdleme21  30344  cdleme22b  30348  cdleme40m  30474  cdlemg34  30719  cdlemk5u  30868  cdlemk6u  30869  cdlemk21N  30880  cdlemk20  30881  cdlemk26b-3  30912  cdlemk26-3  30913  cdlemk28-3  30915  cdlemky  30933  cdlemk11t  30953  cdlemkyyN  30969  dihmeetlem20N  31334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator