MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplbi2comg Unicode version

Theorem simplbi2comg 1363
Description: Implication form of simplbi2com 1364. (Contributed by Alan Sare, 22-Jul-2012.) (New usage is discouraged.) TODO: decide if this is worth keeping.
Assertion
Ref Expression
simplbi2comg  |-  ( (
ph 
<->  ( ps  /\  ch ) )  ->  ( ch  ->  ( ps  ->  ph ) ) )

Proof of Theorem simplbi2comg
StepHypRef Expression
1 bi2 189 . 2  |-  ( (
ph 
<->  ( ps  /\  ch ) )  ->  (
( ps  /\  ch )  ->  ph ) )
21exp3acom23 1362 1  |-  ( (
ph 
<->  ( ps  /\  ch ) )  ->  ( ch  ->  ( ps  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358
This theorem is referenced by:  2uasbanhVD  29003
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator