MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr32 Unicode version

Theorem simpr32 1048
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpr32  |-  ( ( et  /\  ( th 
/\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ps )

Proof of Theorem simpr32
StepHypRef Expression
1 simp32 994 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ps )
21adantl 453 1  |-  ( ( et  /\  ( th 
/\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936
This theorem is referenced by:  oppccatid  13874  subccatid  13972  fuccatid  14095  setccatid  14168  catccatid  14186  xpccatid  14214  nllyidm  17475  utoptop  18187  cgr3tr4  25702  paddasslem9  29944  cdlemd1  30314  cdlemf2  30678  cdlemk34  31026  dihmeetlem18N  31441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator