MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr32 Unicode version

Theorem simpr32 1046
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpr32  |-  ( ( et  /\  ( th 
/\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ps )

Proof of Theorem simpr32
StepHypRef Expression
1 simp32 992 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ps )
21adantl 452 1  |-  ( ( et  /\  ( th 
/\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  oppccatid  13638  subccatid  13736  fuccatid  13859  setccatid  13932  catccatid  13950  xpccatid  13978  nllyidm  17231  cgr3tr4  24747  paddasslem9  30639  cdlemd1  31009  cdlemf2  31373  cdlemk34  31721  dihmeetlem18N  32136
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator