MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl2 Unicode version

Theorem simprl2 1003
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simprl2  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th ) )  ->  ps )

Proof of Theorem simprl2
StepHypRef Expression
1 simpl2 961 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ps )
21adantl 453 1  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th ) )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936
This theorem is referenced by:  issubc3  13974  clscon  17415  txlly  17590  txnlly  17591  itg2add  19519  ftc1a  19789  erdszelem7  24663  ax5seglem6  25588  axcontlem9  25626  axcontlem10  25627  btwnconn1lem13  25748  icodiamlt  26575
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator