MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl2 Unicode version

Theorem simprl2 1001
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simprl2  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th ) )  ->  ps )

Proof of Theorem simprl2
StepHypRef Expression
1 simpl2 959 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ps )
21adantl 452 1  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th ) )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  issubc3  13723  clscon  17156  txlly  17330  txnlly  17331  itg2add  19114  ftc1a  19384  erdszelem7  23728  ax5seglem6  24562  axcontlem9  24600  axcontlem10  24601  btwnconn1lem13  24722  rltrooo  25415  limptlimpr2lem1  25574  limptlimpr2lem2  25575  lppotos  26144  bosser  26167  icodiamlt  26905
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator