MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl2 Unicode version

Theorem simprl2 1001
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simprl2  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th ) )  ->  ps )

Proof of Theorem simprl2
StepHypRef Expression
1 simpl2 959 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ps )
21adantl 452 1  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th ) )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  issubc3  13739  clscon  17172  txlly  17346  txnlly  17347  itg2add  19130  ftc1a  19400  erdszelem7  23743  ax5seglem6  24634  axcontlem9  24672  axcontlem10  24673  btwnconn1lem13  24794  rltrooo  25518  limptlimpr2lem1  25677  limptlimpr2lem2  25678  lppotos  26247  bosser  26270  icodiamlt  27008
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator