MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl3 Unicode version

Theorem simprl3 1002
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simprl3  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th ) )  ->  ch )

Proof of Theorem simprl3
StepHypRef Expression
1 simpl3 960 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ch )
21adantl 452 1  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th ) )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  pwfseqlem5  8285  issubc3  13723  pgpfac1lem5  15314  clscon  17156  txlly  17330  txnlly  17331  itg2add  19114  ftc1a  19384  ax5seglem6  24562  axcontlem10  24601  btwnouttr2  24645  btwnconn1lem13  24722  midofsegid  24727  outsideofeq  24753  limptlimpr2lem1  25574  lppotos  26144  bosser  26167  ivthALT  26258  icodiamlt  26905  mpaaeu  27355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator