MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl3 Unicode version

Theorem simprl3 1002
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simprl3  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th ) )  ->  ch )

Proof of Theorem simprl3
StepHypRef Expression
1 simpl3 960 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ch )
21adantl 452 1  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th ) )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934
This theorem is referenced by:  pwfseqlem5  8301  issubc3  13739  pgpfac1lem5  15330  clscon  17172  txlly  17346  txnlly  17347  itg2add  19130  ftc1a  19400  ax5seglem6  24634  axcontlem10  24673  btwnouttr2  24717  btwnconn1lem13  24794  midofsegid  24799  outsideofeq  24825  limptlimpr2lem1  25677  lppotos  26247  bosser  26270  ivthALT  26361  icodiamlt  27008  mpaaeu  27458
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
  Copyright terms: Public domain W3C validator