MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin01gt0 Unicode version

Theorem sin01gt0 12470
Description: The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin01gt0  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( sin `  A
) )

Proof of Theorem sin01gt0
StepHypRef Expression
1 0xr 8878 . . . . . . . 8  |-  0  e.  RR*
2 1re 8837 . . . . . . . 8  |-  1  e.  RR
3 elioc2 10713 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 653 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 970 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
6 3nn0 9983 . . . . . 6  |-  3  e.  NN0
7 reexpcl 11120 . . . . . 6  |-  ( ( A  e.  RR  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  RR )
85, 6, 7sylancl 643 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  RR )
9 3re 9817 . . . . . 6  |-  3  e.  RR
10 3ne0 9831 . . . . . 6  |-  3  =/=  0
11 redivcl 9479 . . . . . 6  |-  ( ( ( A ^ 3 )  e.  RR  /\  3  e.  RR  /\  3  =/=  0 )  ->  (
( A ^ 3 )  /  3 )  e.  RR )
129, 10, 11mp3an23 1269 . . . . 5  |-  ( ( A ^ 3 )  e.  RR  ->  (
( A ^ 3 )  /  3 )  e.  RR )
138, 12syl 15 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  e.  RR )
14 3nn 9878 . . . . . . . . . 10  |-  3  e.  NN
1514nnzi 10047 . . . . . . . . 9  |-  3  e.  ZZ
16 expgt0 11135 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  3  e.  ZZ  /\  0  <  A )  ->  0  <  ( A ^ 3 ) )
1715, 16mp3an2 1265 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( A ^ 3 ) )
18173adant3 975 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  1 )  ->  0  <  ( A ^ 3 ) )
194, 18sylbi 187 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( A ^ 3 ) )
20 0lt1 9296 . . . . . . . . 9  |-  0  <  1
21 3pos 9830 . . . . . . . . 9  |-  0  <  3
22 1lt3 9888 . . . . . . . . . . 11  |-  1  <  3
23 ltdiv2OLD 9642 . . . . . . . . . . 11  |-  ( ( ( 1  e.  RR  /\  3  e.  RR  /\  ( A ^ 3 )  e.  RR )  /\  ( 0  <  1  /\  0  <  3  /\  0  <  ( A ^ 3 ) ) )  ->  ( 1  <  3  <->  ( ( A ^ 3 )  / 
3 )  <  (
( A ^ 3 )  /  1 ) ) )
2422, 23mpbii 202 . . . . . . . . . 10  |-  ( ( ( 1  e.  RR  /\  3  e.  RR  /\  ( A ^ 3 )  e.  RR )  /\  ( 0  <  1  /\  0  <  3  /\  0  <  ( A ^ 3 ) ) )  ->  ( ( A ^ 3 )  / 
3 )  <  (
( A ^ 3 )  /  1 ) )
2524expcom 424 . . . . . . . . 9  |-  ( ( 0  <  1  /\  0  <  3  /\  0  <  ( A ^ 3 ) )  ->  ( ( 1  e.  RR  /\  3  e.  RR  /\  ( A ^ 3 )  e.  RR )  ->  (
( A ^ 3 )  /  3 )  <  ( ( A ^ 3 )  / 
1 ) ) )
2620, 21, 25mp3an12 1267 . . . . . . . 8  |-  ( 0  <  ( A ^
3 )  ->  (
( 1  e.  RR  /\  3  e.  RR  /\  ( A ^ 3 )  e.  RR )  -> 
( ( A ^
3 )  /  3
)  <  ( ( A ^ 3 )  / 
1 ) ) )
2726com12 27 . . . . . . 7  |-  ( ( 1  e.  RR  /\  3  e.  RR  /\  ( A ^ 3 )  e.  RR )  ->  (
0  <  ( A ^ 3 )  -> 
( ( A ^
3 )  /  3
)  <  ( ( A ^ 3 )  / 
1 ) ) )
282, 9, 27mp3an12 1267 . . . . . 6  |-  ( ( A ^ 3 )  e.  RR  ->  (
0  <  ( A ^ 3 )  -> 
( ( A ^
3 )  /  3
)  <  ( ( A ^ 3 )  / 
1 ) ) )
298, 19, 28sylc 56 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  <  ( ( A ^ 3 )  / 
1 ) )
308recnd 8861 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  CC )
3130div1d 9528 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  1 )  =  ( A ^
3 ) )
3229, 31breqtrd 4047 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  <  ( A ^
3 ) )
33 1nn0 9981 . . . . . . 7  |-  1  e.  NN0
3433a1i 10 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  1  e.  NN0 )
352, 9, 22ltleii 8941 . . . . . . . 8  |-  1  <_  3
36 1z 10053 . . . . . . . . 9  |-  1  e.  ZZ
3736eluz1i 10237 . . . . . . . 8  |-  ( 3  e.  ( ZZ>= `  1
)  <->  ( 3  e.  ZZ  /\  1  <_ 
3 ) )
3815, 35, 37mpbir2an 886 . . . . . . 7  |-  3  e.  ( ZZ>= `  1 )
3938a1i 10 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  3  e.  ( ZZ>= `  1 )
)
404simp2bi 971 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
41 0re 8838 . . . . . . . 8  |-  0  e.  RR
42 ltle 8910 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
4341, 5, 42sylancr 644 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
0  <  A  ->  0  <_  A ) )
4440, 43mpd 14 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <_  A )
454simp3bi 972 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
465, 34, 39, 44, 45leexp2rd 11278 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  <_ 
( A ^ 1 ) )
475recnd 8861 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
4847exp1d 11240 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 1 )  =  A )
4946, 48breqtrd 4047 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  <_  A )
5013, 8, 5, 32, 49ltletrd 8976 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  <  A )
5113, 5posdifd 9359 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  3
)  <  A  <->  0  <  ( A  -  ( ( A ^ 3 )  /  3 ) ) ) )
5250, 51mpbid 201 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( A  -  (
( A ^ 3 )  /  3 ) ) )
53 sin01bnd 12465 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A )  /\  ( sin `  A )  < 
A ) )
5453simpld 445 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
) )
555, 13resubcld 9211 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
3 ) )  e.  RR )
565resincld 12423 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  e.  RR )
57 lttr 8899 . . . 4  |-  ( ( 0  e.  RR  /\  ( A  -  (
( A ^ 3 )  /  3 ) )  e.  RR  /\  ( sin `  A )  e.  RR )  -> 
( ( 0  < 
( A  -  (
( A ^ 3 )  /  3 ) )  /\  ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
) )  ->  0  <  ( sin `  A
) ) )
5841, 57mp3an1 1264 . . 3  |-  ( ( ( A  -  (
( A ^ 3 )  /  3 ) )  e.  RR  /\  ( sin `  A )  e.  RR )  -> 
( ( 0  < 
( A  -  (
( A ^ 3 )  /  3 ) )  /\  ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
) )  ->  0  <  ( sin `  A
) ) )
5955, 56, 58syl2anc 642 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 0  <  ( A  -  ( ( A ^ 3 )  / 
3 ) )  /\  ( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A ) )  -> 
0  <  ( sin `  A ) ) )
6052, 54, 59mp2and 660 1  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( sin `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   3c3 9796   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   (,]cioc 10657   ^cexp 11104   sincsin 12345
This theorem is referenced by:  sin02gt0  12472  sincos1sgn  12473  sincos4thpi  19881
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ioc 10661  df-ico 10662  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-fac 11289  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351
  Copyright terms: Public domain W3C validator