MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin4lt0 Unicode version

Theorem sin4lt0 12491
Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin4lt0  |-  ( sin `  4 )  <  0

Proof of Theorem sin4lt0
StepHypRef Expression
1 2t2e4 9887 . . . 4  |-  ( 2  x.  2 )  =  4
21fveq2i 5544 . . 3  |-  ( sin `  ( 2  x.  2 ) )  =  ( sin `  4 )
3 2cn 9832 . . . 4  |-  2  e.  CC
4 sin2t 12473 . . . 4  |-  ( 2  e.  CC  ->  ( sin `  ( 2  x.  2 ) )  =  ( 2  x.  (
( sin `  2
)  x.  ( cos `  2 ) ) ) )
53, 4ax-mp 8 . . 3  |-  ( sin `  ( 2  x.  2 ) )  =  ( 2  x.  ( ( sin `  2 )  x.  ( cos `  2
) ) )
62, 5eqtr3i 2318 . 2  |-  ( sin `  4 )  =  ( 2  x.  (
( sin `  2
)  x.  ( cos `  2 ) ) )
7 sincos2sgn 12490 . . . . . . 7  |-  ( 0  <  ( sin `  2
)  /\  ( cos `  2 )  <  0
)
87simpri 448 . . . . . 6  |-  ( cos `  2 )  <  0
9 2re 9831 . . . . . . . 8  |-  2  e.  RR
10 recoscl 12437 . . . . . . . 8  |-  ( 2  e.  RR  ->  ( cos `  2 )  e.  RR )
119, 10ax-mp 8 . . . . . . 7  |-  ( cos `  2 )  e.  RR
12 0re 8854 . . . . . . 7  |-  0  e.  RR
13 resincl 12436 . . . . . . . . 9  |-  ( 2  e.  RR  ->  ( sin `  2 )  e.  RR )
149, 13ax-mp 8 . . . . . . . 8  |-  ( sin `  2 )  e.  RR
157simpli 444 . . . . . . . 8  |-  0  <  ( sin `  2
)
1614, 15pm3.2i 441 . . . . . . 7  |-  ( ( sin `  2 )  e.  RR  /\  0  <  ( sin `  2
) )
17 ltmul2 9623 . . . . . . 7  |-  ( ( ( cos `  2
)  e.  RR  /\  0  e.  RR  /\  (
( sin `  2
)  e.  RR  /\  0  <  ( sin `  2
) ) )  -> 
( ( cos `  2
)  <  0  <->  ( ( sin `  2 )  x.  ( cos `  2
) )  <  (
( sin `  2
)  x.  0 ) ) )
1811, 12, 16, 17mp3an 1277 . . . . . 6  |-  ( ( cos `  2 )  <  0  <->  ( ( sin `  2 )  x.  ( cos `  2
) )  <  (
( sin `  2
)  x.  0 ) )
198, 18mpbi 199 . . . . 5  |-  ( ( sin `  2 )  x.  ( cos `  2
) )  <  (
( sin `  2
)  x.  0 )
2014recni 8865 . . . . . 6  |-  ( sin `  2 )  e.  CC
2120mul01i 9018 . . . . 5  |-  ( ( sin `  2 )  x.  0 )  =  0
2219, 21breqtri 4062 . . . 4  |-  ( ( sin `  2 )  x.  ( cos `  2
) )  <  0
2314, 11remulcli 8867 . . . . 5  |-  ( ( sin `  2 )  x.  ( cos `  2
) )  e.  RR
24 2pos 9844 . . . . . 6  |-  0  <  2
259, 24pm3.2i 441 . . . . 5  |-  ( 2  e.  RR  /\  0  <  2 )
26 ltmul2 9623 . . . . 5  |-  ( ( ( ( sin `  2
)  x.  ( cos `  2 ) )  e.  RR  /\  0  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( ( sin `  2 )  x.  ( cos `  2
) )  <  0  <->  ( 2  x.  ( ( sin `  2 )  x.  ( cos `  2
) ) )  < 
( 2  x.  0 ) ) )
2723, 12, 25, 26mp3an 1277 . . . 4  |-  ( ( ( sin `  2
)  x.  ( cos `  2 ) )  <  0  <->  ( 2  x.  ( ( sin `  2 )  x.  ( cos `  2
) ) )  < 
( 2  x.  0 ) )
2822, 27mpbi 199 . . 3  |-  ( 2  x.  ( ( sin `  2 )  x.  ( cos `  2
) ) )  < 
( 2  x.  0 )
293mul01i 9018 . . 3  |-  ( 2  x.  0 )  =  0
3028, 29breqtri 4062 . 2  |-  ( 2  x.  ( ( sin `  2 )  x.  ( cos `  2
) ) )  <  0
316, 30eqbrtri 4058 1  |-  ( sin `  4 )  <  0
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753    x. cmul 8758    < clt 8883   2c2 9811   4c4 9813   sincsin 12361   cosccos 12362
This theorem is referenced by:  pilem3  19845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-ioc 10677  df-ico 10678  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368
  Copyright terms: Public domain W3C validator