MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinasin Unicode version

Theorem sinasin 20290
Description: The arcsine function is an inverse to  sin. This is the main property that justifies the notation arcsin or  sin
^ -u 1. Because  sin is not an injection, the other converse identity asinsin 20293 is only true under limited circumstances. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
sinasin  |-  ( A  e.  CC  ->  ( sin `  (arcsin `  A
) )  =  A )

Proof of Theorem sinasin
StepHypRef Expression
1 asincl 20274 . . 3  |-  ( A  e.  CC  ->  (arcsin `  A )  e.  CC )
2 sinval 12493 . . 3  |-  ( (arcsin `  A )  e.  CC  ->  ( sin `  (arcsin `  A ) )  =  ( ( ( exp `  ( _i  x.  (arcsin `  A ) ) )  -  ( exp `  ( -u _i  x.  (arcsin `  A ) ) ) )  /  ( 2  x.  _i ) ) )
31, 2syl 15 . 2  |-  ( A  e.  CC  ->  ( sin `  (arcsin `  A
) )  =  ( ( ( exp `  (
_i  x.  (arcsin `  A
) ) )  -  ( exp `  ( -u _i  x.  (arcsin `  A
) ) ) )  /  ( 2  x.  _i ) ) )
4 ax-icn 8883 . . . . . 6  |-  _i  e.  CC
5 mulcl 8908 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
64, 5mpan 651 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
76negcld 9231 . . . . 5  |-  ( A  e.  CC  ->  -u (
_i  x.  A )  e.  CC )
8 ax-1cn 8882 . . . . . . 7  |-  1  e.  CC
9 sqcl 11256 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
10 subcl 9138 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( A ^ 2 )  e.  CC )  -> 
( 1  -  ( A ^ 2 ) )  e.  CC )
118, 9, 10sylancr 644 . . . . . 6  |-  ( A  e.  CC  ->  (
1  -  ( A ^ 2 ) )  e.  CC )
1211sqrcld 12009 . . . . 5  |-  ( A  e.  CC  ->  ( sqr `  ( 1  -  ( A ^ 2 ) ) )  e.  CC )
136, 7, 12pnpcan2d 9282 . . . 4  |-  ( A  e.  CC  ->  (
( ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) )  -  ( -u ( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) )  =  ( ( _i  x.  A )  -  -u (
_i  x.  A )
) )
14 efiasin 20289 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  (arcsin `  A ) ) )  =  ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )
15 mulneg12 9305 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  (arcsin `  A )  e.  CC )  ->  ( -u _i  x.  (arcsin `  A ) )  =  ( _i  x.  -u (arcsin `  A ) ) )
164, 1, 15sylancr 644 . . . . . . . 8  |-  ( A  e.  CC  ->  ( -u _i  x.  (arcsin `  A ) )  =  ( _i  x.  -u (arcsin `  A ) ) )
17 asinneg 20287 . . . . . . . . 9  |-  ( A  e.  CC  ->  (arcsin `  -u A )  =  -u (arcsin `  A ) )
1817oveq2d 5958 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  (arcsin `  -u A
) )  =  ( _i  x.  -u (arcsin `  A ) ) )
1916, 18eqtr4d 2393 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u _i  x.  (arcsin `  A ) )  =  ( _i  x.  (arcsin `  -u A ) ) )
2019fveq2d 5609 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  (arcsin `  A )
) )  =  ( exp `  ( _i  x.  (arcsin `  -u A
) ) ) )
21 negcl 9139 . . . . . . 7  |-  ( A  e.  CC  ->  -u A  e.  CC )
22 efiasin 20289 . . . . . . 7  |-  ( -u A  e.  CC  ->  ( exp `  ( _i  x.  (arcsin `  -u A
) ) )  =  ( ( _i  x.  -u A )  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )
2321, 22syl 15 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  (arcsin `  -u A ) ) )  =  ( ( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) ) )
24 mulneg2 9304 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  -u A
)  =  -u (
_i  x.  A )
)
254, 24mpan 651 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  -u A )  =  -u ( _i  x.  A ) )
26 sqneg 11254 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( -u A ^ 2 )  =  ( A ^
2 ) )
2726oveq2d 5958 . . . . . . . 8  |-  ( A  e.  CC  ->  (
1  -  ( -u A ^ 2 ) )  =  ( 1  -  ( A ^ 2 ) ) )
2827fveq2d 5609 . . . . . . 7  |-  ( A  e.  CC  ->  ( sqr `  ( 1  -  ( -u A ^
2 ) ) )  =  ( sqr `  (
1  -  ( A ^ 2 ) ) ) )
2925, 28oveq12d 5960 . . . . . 6  |-  ( A  e.  CC  ->  (
( _i  x.  -u A
)  +  ( sqr `  ( 1  -  ( -u A ^ 2 ) ) ) )  =  ( -u ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) ) )
3020, 23, 293eqtrd 2394 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  (arcsin `  A )
) )  =  (
-u ( _i  x.  A )  +  ( sqr `  ( 1  -  ( A ^
2 ) ) ) ) )
3114, 30oveq12d 5960 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  (arcsin `  A
) ) )  -  ( exp `  ( -u _i  x.  (arcsin `  A
) ) ) )  =  ( ( ( _i  x.  A )  +  ( sqr `  (
1  -  ( A ^ 2 ) ) ) )  -  ( -u ( _i  x.  A
)  +  ( sqr `  ( 1  -  ( A ^ 2 ) ) ) ) ) )
3262timesd 10043 . . . . 5  |-  ( A  e.  CC  ->  (
2  x.  ( _i  x.  A ) )  =  ( ( _i  x.  A )  +  ( _i  x.  A
) ) )
33 2cn 9903 . . . . . 6  |-  2  e.  CC
34 mulass 8912 . . . . . 6  |-  ( ( 2  e.  CC  /\  _i  e.  CC  /\  A  e.  CC )  ->  (
( 2  x.  _i )  x.  A )  =  ( 2  x.  ( _i  x.  A
) ) )
3533, 4, 34mp3an12 1267 . . . . 5  |-  ( A  e.  CC  ->  (
( 2  x.  _i )  x.  A )  =  ( 2  x.  ( _i  x.  A
) ) )
366, 6subnegd 9251 . . . . 5  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  -  -u (
_i  x.  A )
)  =  ( ( _i  x.  A )  +  ( _i  x.  A ) ) )
3732, 35, 363eqtr4d 2400 . . . 4  |-  ( A  e.  CC  ->  (
( 2  x.  _i )  x.  A )  =  ( ( _i  x.  A )  -  -u ( _i  x.  A
) ) )
3813, 31, 373eqtr4d 2400 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  (arcsin `  A
) ) )  -  ( exp `  ( -u _i  x.  (arcsin `  A
) ) ) )  =  ( ( 2  x.  _i )  x.  A ) )
39 mulcl 8908 . . . . . . 7  |-  ( ( _i  e.  CC  /\  (arcsin `  A )  e.  CC )  ->  (
_i  x.  (arcsin `  A
) )  e.  CC )
404, 1, 39sylancr 644 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  (arcsin `  A
) )  e.  CC )
41 efcl 12455 . . . . . 6  |-  ( ( _i  x.  (arcsin `  A ) )  e.  CC  ->  ( exp `  ( _i  x.  (arcsin `  A ) ) )  e.  CC )
4240, 41syl 15 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  (arcsin `  A ) ) )  e.  CC )
434negcli 9201 . . . . . . 7  |-  -u _i  e.  CC
44 mulcl 8908 . . . . . . 7  |-  ( (
-u _i  e.  CC  /\  (arcsin `  A )  e.  CC )  ->  ( -u _i  x.  (arcsin `  A ) )  e.  CC )
4543, 1, 44sylancr 644 . . . . . 6  |-  ( A  e.  CC  ->  ( -u _i  x.  (arcsin `  A ) )  e.  CC )
46 efcl 12455 . . . . . 6  |-  ( (
-u _i  x.  (arcsin `  A ) )  e.  CC  ->  ( exp `  ( -u _i  x.  (arcsin `  A ) ) )  e.  CC )
4745, 46syl 15 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  (arcsin `  A )
) )  e.  CC )
4842, 47subcld 9244 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  (arcsin `  A
) ) )  -  ( exp `  ( -u _i  x.  (arcsin `  A
) ) ) )  e.  CC )
49 id 19 . . . 4  |-  ( A  e.  CC  ->  A  e.  CC )
5033, 4mulcli 8929 . . . . 5  |-  ( 2  x.  _i )  e.  CC
5150a1i 10 . . . 4  |-  ( A  e.  CC  ->  (
2  x.  _i )  e.  CC )
52 2ne0 9916 . . . . . 6  |-  2  =/=  0
53 ine0 9302 . . . . . 6  |-  _i  =/=  0
5433, 4, 52, 53mulne0i 9498 . . . . 5  |-  ( 2  x.  _i )  =/=  0
5554a1i 10 . . . 4  |-  ( A  e.  CC  ->  (
2  x.  _i )  =/=  0 )
5648, 49, 51, 55divmul2d 9656 . . 3  |-  ( A  e.  CC  ->  (
( ( ( exp `  ( _i  x.  (arcsin `  A ) ) )  -  ( exp `  ( -u _i  x.  (arcsin `  A ) ) ) )  /  ( 2  x.  _i ) )  =  A  <->  ( ( exp `  ( _i  x.  (arcsin `  A ) ) )  -  ( exp `  ( -u _i  x.  (arcsin `  A ) ) ) )  =  ( ( 2  x.  _i )  x.  A )
) )
5738, 56mpbird 223 . 2  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  (arcsin `  A
) ) )  -  ( exp `  ( -u _i  x.  (arcsin `  A
) ) ) )  /  ( 2  x.  _i ) )  =  A )
583, 57eqtrd 2390 1  |-  ( A  e.  CC  ->  ( sin `  (arcsin `  A
) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1642    e. wcel 1710    =/= wne 2521   ` cfv 5334  (class class class)co 5942   CCcc 8822   0cc0 8824   1c1 8825   _ici 8826    + caddc 8827    x. cmul 8829    - cmin 9124   -ucneg 9125    / cdiv 9510   2c2 9882   ^cexp 11194   sqrcsqr 11808   expce 12434   sincsin 12436  arcsincasin 20263
This theorem is referenced by:  cosacos  20291  asinsinb  20298
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-inf2 7429  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901  ax-pre-sup 8902  ax-addf 8903  ax-mulf 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-iin 3987  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-se 4432  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-isom 5343  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-of 6162  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-1o 6563  df-2o 6564  df-oadd 6567  df-er 6744  df-map 6859  df-pm 6860  df-ixp 6903  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-fi 7252  df-sup 7281  df-oi 7312  df-card 7659  df-cda 7881  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511  df-nn 9834  df-2 9891  df-3 9892  df-4 9893  df-5 9894  df-6 9895  df-7 9896  df-8 9897  df-9 9898  df-10 9899  df-n0 10055  df-z 10114  df-dec 10214  df-uz 10320  df-q 10406  df-rp 10444  df-xneg 10541  df-xadd 10542  df-xmul 10543  df-ioo 10749  df-ioc 10750  df-ico 10751  df-icc 10752  df-fz 10872  df-fzo 10960  df-fl 11014  df-mod 11063  df-seq 11136  df-exp 11195  df-fac 11379  df-bc 11406  df-hash 11428  df-shft 11652  df-cj 11674  df-re 11675  df-im 11676  df-sqr 11810  df-abs 11811  df-limsup 12035  df-clim 12052  df-rlim 12053  df-sum 12250  df-ef 12440  df-sin 12442  df-cos 12443  df-pi 12445  df-struct 13241  df-ndx 13242  df-slot 13243  df-base 13244  df-sets 13245  df-ress 13246  df-plusg 13312  df-mulr 13313  df-starv 13314  df-sca 13315  df-vsca 13316  df-tset 13318  df-ple 13319  df-ds 13321  df-unif 13322  df-hom 13323  df-cco 13324  df-rest 13420  df-topn 13421  df-topgen 13437  df-pt 13438  df-prds 13441  df-xrs 13496  df-0g 13497  df-gsum 13498  df-qtop 13503  df-imas 13504  df-xps 13506  df-mre 13581  df-mrc 13582  df-acs 13584  df-mnd 14460  df-submnd 14509  df-mulg 14585  df-cntz 14886  df-cmn 15184  df-xmet 16469  df-met 16470  df-bl 16471  df-mopn 16472  df-fbas 16473  df-fg 16474  df-cnfld 16477  df-top 16736  df-bases 16738  df-topon 16739  df-topsp 16740  df-cld 16856  df-ntr 16857  df-cls 16858  df-nei 16935  df-lp 16968  df-perf 16969  df-cn 17057  df-cnp 17058  df-haus 17143  df-tx 17357  df-hmeo 17546  df-fil 17637  df-fm 17729  df-flim 17730  df-flf 17731  df-xms 17981  df-ms 17982  df-tms 17983  df-cncf 18479  df-limc 19314  df-dv 19315  df-log 20015  df-asin 20266
  Copyright terms: Public domain W3C validator