MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincn Structured version   Unicode version

Theorem sincn 20361
Description: Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
Assertion
Ref Expression
sincn  |-  sin  e.  ( CC -cn-> CC )

Proof of Theorem sincn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sin 12673 . 2  |-  sin  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
2 eqid 2437 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
32subcn 18897 . . . . . . . . 9  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
43a1i 11 . . . . . . . 8  |-  (  T. 
->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
5 efcn 20360 . . . . . . . . . 10  |-  exp  e.  ( CC -cn-> CC )
65a1i 11 . . . . . . . . 9  |-  (  T. 
->  exp  e.  ( CC
-cn-> CC ) )
7 ax-icn 9050 . . . . . . . . . 10  |-  _i  e.  CC
8 eqid 2437 . . . . . . . . . . 11  |-  ( x  e.  CC  |->  ( _i  x.  x ) )  =  ( x  e.  CC  |->  ( _i  x.  x ) )
98mulc1cncf 18936 . . . . . . . . . 10  |-  ( _i  e.  CC  ->  (
x  e.  CC  |->  ( _i  x.  x ) )  e.  ( CC
-cn-> CC ) )
107, 9mp1i 12 . . . . . . . . 9  |-  (  T. 
->  ( x  e.  CC  |->  ( _i  x.  x
) )  e.  ( CC -cn-> CC ) )
116, 10cncfmpt1f 18944 . . . . . . . 8  |-  (  T. 
->  ( x  e.  CC  |->  ( exp `  ( _i  x.  x ) ) )  e.  ( CC
-cn-> CC ) )
127negcli 9369 . . . . . . . . . 10  |-  -u _i  e.  CC
13 eqid 2437 . . . . . . . . . . 11  |-  ( x  e.  CC  |->  ( -u _i  x.  x ) )  =  ( x  e.  CC  |->  ( -u _i  x.  x ) )
1413mulc1cncf 18936 . . . . . . . . . 10  |-  ( -u _i  e.  CC  ->  (
x  e.  CC  |->  (
-u _i  x.  x
) )  e.  ( CC -cn-> CC ) )
1512, 14mp1i 12 . . . . . . . . 9  |-  (  T. 
->  ( x  e.  CC  |->  ( -u _i  x.  x
) )  e.  ( CC -cn-> CC ) )
166, 15cncfmpt1f 18944 . . . . . . . 8  |-  (  T. 
->  ( x  e.  CC  |->  ( exp `  ( -u _i  x.  x ) ) )  e.  ( CC
-cn-> CC ) )
172, 4, 11, 16cncfmpt2f 18945 . . . . . . 7  |-  (  T. 
->  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) )  e.  ( CC
-cn-> CC ) )
18 cncff 18924 . . . . . . 7  |-  ( ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) )  e.  ( CC
-cn-> CC )  ->  (
x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) ) : CC --> CC )
1917, 18syl 16 . . . . . 6  |-  (  T. 
->  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) ) : CC --> CC )
20 eqid 2437 . . . . . . 7  |-  ( x  e.  CC  |->  ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) )
2120fmpt 5891 . . . . . 6  |-  ( A. x  e.  CC  (
( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  e.  CC  <->  ( x  e.  CC  |->  ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) ) ) : CC --> CC )
2219, 21sylibr 205 . . . . 5  |-  (  T. 
->  A. x  e.  CC  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  e.  CC )
23 eqidd 2438 . . . . 5  |-  (  T. 
->  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) ) ) )
24 eqidd 2438 . . . . 5  |-  (  T. 
->  ( y  e.  CC  |->  ( y  /  (
2  x.  _i ) ) )  =  ( y  e.  CC  |->  ( y  /  ( 2  x.  _i ) ) ) )
25 oveq1 6089 . . . . 5  |-  ( y  =  ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  ->  ( y  / 
( 2  x.  _i ) )  =  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
2622, 23, 24, 25fmptcof 5903 . . . 4  |-  (  T. 
->  ( ( y  e.  CC  |->  ( y  / 
( 2  x.  _i ) ) )  o.  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) ) )  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) ) )
27 2cn 10071 . . . . . . . 8  |-  2  e.  CC
2827, 7mulcli 9096 . . . . . . 7  |-  ( 2  x.  _i )  e.  CC
29 2ne0 10084 . . . . . . . 8  |-  2  =/=  0
30 ine0 9470 . . . . . . . 8  |-  _i  =/=  0
3127, 7, 29, 30mulne0i 9666 . . . . . . 7  |-  ( 2  x.  _i )  =/=  0
32 eqid 2437 . . . . . . . 8  |-  ( y  e.  CC  |->  ( y  /  ( 2  x.  _i ) ) )  =  ( y  e.  CC  |->  ( y  / 
( 2  x.  _i ) ) )
3332divccncf 18937 . . . . . . 7  |-  ( ( ( 2  x.  _i )  e.  CC  /\  (
2  x.  _i )  =/=  0 )  -> 
( y  e.  CC  |->  ( y  /  (
2  x.  _i ) ) )  e.  ( CC -cn-> CC ) )
3428, 31, 33mp2an 655 . . . . . 6  |-  ( y  e.  CC  |->  ( y  /  ( 2  x.  _i ) ) )  e.  ( CC -cn-> CC )
3534a1i 11 . . . . 5  |-  (  T. 
->  ( y  e.  CC  |->  ( y  /  (
2  x.  _i ) ) )  e.  ( CC -cn-> CC ) )
3617, 35cncfco 18938 . . . 4  |-  (  T. 
->  ( ( y  e.  CC  |->  ( y  / 
( 2  x.  _i ) ) )  o.  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) ) )  e.  ( CC -cn-> CC ) )
3726, 36eqeltrrd 2512 . . 3  |-  (  T. 
->  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )  e.  ( CC -cn-> CC ) )
3837trud 1333 . 2  |-  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )  e.  ( CC -cn-> CC )
391, 38eqeltri 2507 1  |-  sin  e.  ( CC -cn-> CC )
Colors of variables: wff set class
Syntax hints:    T. wtru 1326    e. wcel 1726    =/= wne 2600   A.wral 2706    e. cmpt 4267    o. ccom 4883   -->wf 5451   ` cfv 5455  (class class class)co 6082   CCcc 8989   0cc0 8991   _ici 8993    x. cmul 8996    - cmin 9292   -ucneg 9293    / cdiv 9678   2c2 10050   expce 12665   sincsin 12667   TopOpenctopn 13650  ℂfldccnfld 16704    Cn ccn 17289    tX ctx 17593   -cn->ccncf 18907
This theorem is referenced by:  pilem3  20370  itgsin0pilem1  27721  ibliccsinexp  27722  itgsinexplem1  27725  itgsinexp  27726
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069  ax-addf 9070  ax-mulf 9071
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-iin 4097  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-se 4543  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-isom 5464  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6306  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-2o 6726  df-oadd 6729  df-er 6906  df-map 7021  df-pm 7022  df-ixp 7065  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-fi 7417  df-sup 7447  df-oi 7480  df-card 7827  df-cda 8049  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-2 10059  df-3 10060  df-4 10061  df-5 10062  df-6 10063  df-7 10064  df-8 10065  df-9 10066  df-10 10067  df-n0 10223  df-z 10284  df-dec 10384  df-uz 10490  df-q 10576  df-rp 10614  df-xneg 10711  df-xadd 10712  df-xmul 10713  df-ico 10923  df-icc 10924  df-fz 11045  df-fzo 11137  df-fl 11203  df-seq 11325  df-exp 11384  df-fac 11568  df-bc 11595  df-hash 11620  df-shft 11883  df-cj 11905  df-re 11906  df-im 11907  df-sqr 12041  df-abs 12042  df-limsup 12266  df-clim 12283  df-rlim 12284  df-sum 12481  df-ef 12671  df-sin 12673  df-struct 13472  df-ndx 13473  df-slot 13474  df-base 13475  df-sets 13476  df-ress 13477  df-plusg 13543  df-mulr 13544  df-starv 13545  df-sca 13546  df-vsca 13547  df-tset 13549  df-ple 13550  df-ds 13552  df-unif 13553  df-hom 13554  df-cco 13555  df-rest 13651  df-topn 13652  df-topgen 13668  df-pt 13669  df-prds 13672  df-xrs 13727  df-0g 13728  df-gsum 13729  df-qtop 13734  df-imas 13735  df-xps 13737  df-mre 13812  df-mrc 13813  df-acs 13815  df-mnd 14691  df-submnd 14740  df-mulg 14816  df-cntz 15117  df-cmn 15415  df-psmet 16695  df-xmet 16696  df-met 16697  df-bl 16698  df-mopn 16699  df-fbas 16700  df-fg 16701  df-cnfld 16705  df-top 16964  df-bases 16966  df-topon 16967  df-topsp 16968  df-cld 17084  df-ntr 17085  df-cls 17086  df-nei 17163  df-lp 17201  df-perf 17202  df-cn 17292  df-cnp 17293  df-haus 17380  df-tx 17595  df-hmeo 17788  df-fil 17879  df-fm 17971  df-flim 17972  df-flf 17973  df-xms 18351  df-ms 18352  df-tms 18353  df-cncf 18909  df-limc 19754  df-dv 19755
  Copyright terms: Public domain W3C validator