MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sineq0 Structured version   Unicode version

Theorem sineq0 20430
Description: A complex number whose sine is zero is an integer multiple of  pi. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
sineq0  |-  ( A  e.  CC  ->  (
( sin `  A
)  =  0  <->  ( A  /  pi )  e.  ZZ ) )

Proof of Theorem sineq0
StepHypRef Expression
1 sinval 12724 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
21eqeq1d 2445 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( sin `  A
)  =  0  <->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) )  =  0 ) )
3 ax-icn 9050 . . . . . . . . . . . . . . . . . . . 20  |-  _i  e.  CC
4 mulcl 9075 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
53, 4mpan 653 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
6 efcl 12686 . . . . . . . . . . . . . . . . . . 19  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
75, 6syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
83negcli 9369 . . . . . . . . . . . . . . . . . . . 20  |-  -u _i  e.  CC
9 mulcl 9075 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
108, 9mpan 653 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  e.  CC )
11 efcl 12686 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
1210, 11syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
137, 12subcld 9412 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
14 2cn 10071 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  CC
1514, 3mulcli 9096 . . . . . . . . . . . . . . . . . 18  |-  ( 2  x.  _i )  e.  CC
16 2ne0 10084 . . . . . . . . . . . . . . . . . . 19  |-  2  =/=  0
17 ine0 9470 . . . . . . . . . . . . . . . . . . 19  |-  _i  =/=  0
1814, 3, 16, 17mulne0i 9666 . . . . . . . . . . . . . . . . . 18  |-  ( 2  x.  _i )  =/=  0
19 diveq0 9689 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
2  x.  _i )  e.  CC  /\  (
2  x.  _i )  =/=  0 )  -> 
( ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  (
2  x.  _i ) )  =  0  <->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  =  0 ) )
2015, 18, 19mp3an23 1272 . . . . . . . . . . . . . . . . 17  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  ->  (
( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) )  =  0  <->  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  =  0 ) )
2113, 20syl 16 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) )  =  0  <->  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  =  0 ) )
227, 12subeq0ad 9422 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  =  0  <->  ( exp `  ( _i  x.  A
) )  =  ( exp `  ( -u _i  x.  A ) ) ) )
232, 21, 223bitrd 272 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
( sin `  A
)  =  0  <->  ( exp `  ( _i  x.  A ) )  =  ( exp `  ( -u _i  x.  A ) ) ) )
24 oveq2 6090 . . . . . . . . . . . . . . . 16  |-  ( ( exp `  ( _i  x.  A ) )  =  ( exp `  ( -u _i  x.  A ) )  ->  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  A )
) )  =  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) ) )
25 mul12 9233 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( _i  e.  CC  /\  2  e.  CC  /\  A  e.  CC )  ->  (
_i  x.  ( 2  x.  A ) )  =  ( 2  x.  ( _i  x.  A
) ) )
263, 14, 25mp3an12 1270 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  CC  ->  (
_i  x.  ( 2  x.  A ) )  =  ( 2  x.  ( _i  x.  A
) ) )
2752timesd 10211 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  CC  ->  (
2  x.  ( _i  x.  A ) )  =  ( ( _i  x.  A )  +  ( _i  x.  A
) ) )
2826, 27eqtrd 2469 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  CC  ->  (
_i  x.  ( 2  x.  A ) )  =  ( ( _i  x.  A )  +  ( _i  x.  A
) ) )
2928fveq2d 5733 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  ( 2  x.  A
) ) )  =  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  A ) ) ) )
30 efadd 12697 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( _i  x.  A
)  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  A )
) ) )
315, 5, 30syl2anc 644 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  CC  ->  ( exp `  ( ( _i  x.  A )  +  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  A
) ) ) )
3229, 31eqtr2d 2470 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  A
) ) )  =  ( exp `  (
_i  x.  ( 2  x.  A ) ) ) )
33 efadd 12697 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( _i  x.  A
)  e.  CC  /\  ( -u _i  x.  A
)  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  +  ( -u _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  A ) ) ) )
345, 10, 33syl2anc 644 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  CC  ->  ( exp `  ( ( _i  x.  A )  +  ( -u _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( -u _i  x.  A ) ) ) )
353negidi 9370 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( _i  +  -u _i )  =  0
3635oveq1i 6092 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( _i  +  -u _i )  x.  A )  =  ( 0  x.  A )
37 adddir 9084 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( _i  e.  CC  /\  -u _i  e.  CC  /\  A  e.  CC )  ->  ( ( _i  +  -u _i )  x.  A
)  =  ( ( _i  x.  A )  +  ( -u _i  x.  A ) ) )
383, 8, 37mp3an12 1270 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  CC  ->  (
( _i  +  -u _i )  x.  A
)  =  ( ( _i  x.  A )  +  ( -u _i  x.  A ) ) )
39 mul02 9245 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )
4036, 38, 393eqtr3a 2493 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  +  ( -u _i  x.  A ) )  =  0 )
4140fveq2d 5733 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  CC  ->  ( exp `  ( ( _i  x.  A )  +  ( -u _i  x.  A ) ) )  =  ( exp `  0
) )
42 ef0 12694 . . . . . . . . . . . . . . . . . . . 20  |-  ( exp `  0 )  =  1
4341, 42syl6eq 2485 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  CC  ->  ( exp `  ( ( _i  x.  A )  +  ( -u _i  x.  A ) ) )  =  1 )
4434, 43eqtr3d 2471 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) )  =  1 )
4532, 44eqeq12d 2451 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) )  <-> 
( exp `  (
_i  x.  ( 2  x.  A ) ) )  =  1 ) )
46 fveq2 5729 . . . . . . . . . . . . . . . . 17  |-  ( ( exp `  ( _i  x.  ( 2  x.  A ) ) )  =  1  ->  ( abs `  ( exp `  (
_i  x.  ( 2  x.  A ) ) ) )  =  ( abs `  1 ) )
4745, 46syl6bi 221 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) )  ->  ( abs `  ( exp `  ( _i  x.  ( 2  x.  A
) ) ) )  =  ( abs `  1
) ) )
4824, 47syl5 31 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  ( exp `  ( -u _i  x.  A ) )  -> 
( abs `  ( exp `  ( _i  x.  ( 2  x.  A
) ) ) )  =  ( abs `  1
) ) )
4923, 48sylbid 208 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  (
( sin `  A
)  =  0  -> 
( abs `  ( exp `  ( _i  x.  ( 2  x.  A
) ) ) )  =  ( abs `  1
) ) )
50 abs1 12103 . . . . . . . . . . . . . . . 16  |-  ( abs `  1 )  =  1
5150eqeq2i 2447 . . . . . . . . . . . . . . 15  |-  ( ( abs `  ( exp `  ( _i  x.  (
2  x.  A ) ) ) )  =  ( abs `  1
)  <->  ( abs `  ( exp `  ( _i  x.  ( 2  x.  A
) ) ) )  =  1 )
52 2re 10070 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR
53 mulre 11927 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  2  e.  RR  /\  2  =/=  0 )  ->  ( A  e.  RR  <->  ( 2  x.  A )  e.  RR ) )
5452, 16, 53mp3an23 1272 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( 2  x.  A )  e.  RR ) )
55 mulcl 9075 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  A
)  e.  CC )
5614, 55mpan 653 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  (
2  x.  A )  e.  CC )
57 absefib 12800 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  x.  A )  e.  CC  ->  (
( 2  x.  A
)  e.  RR  <->  ( abs `  ( exp `  (
_i  x.  ( 2  x.  A ) ) ) )  =  1 ) )
5856, 57syl 16 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( 2  x.  A
)  e.  RR  <->  ( abs `  ( exp `  (
_i  x.  ( 2  x.  A ) ) ) )  =  1 ) )
5954, 58bitr2d 247 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
( abs `  ( exp `  ( _i  x.  ( 2  x.  A
) ) ) )  =  1  <->  A  e.  RR ) )
6051, 59syl5bb 250 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  (
( abs `  ( exp `  ( _i  x.  ( 2  x.  A
) ) ) )  =  ( abs `  1
)  <->  A  e.  RR ) )
6149, 60sylibd 207 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
( sin `  A
)  =  0  ->  A  e.  RR )
)
6261imp 420 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  ->  A  e.  RR )
63 pire 20373 . . . . . . . . . . . . 13  |-  pi  e.  RR
64 pipos 20374 . . . . . . . . . . . . 13  |-  0  <  pi
6563, 64elrpii 10616 . . . . . . . . . . . 12  |-  pi  e.  RR+
66 modval 11253 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  pi  e.  RR+ )  ->  ( A  mod  pi )  =  ( A  -  (
pi  x.  ( |_ `  ( A  /  pi ) ) ) ) )
6762, 65, 66sylancl 645 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  mod  pi )  =  ( A  -  ( pi  x.  ( |_ `  ( A  /  pi ) ) ) ) )
6863recni 9103 . . . . . . . . . . . . 13  |-  pi  e.  CC
6963, 64gt0ne0ii 9564 . . . . . . . . . . . . . . . . 17  |-  pi  =/=  0
70 redivcl 9734 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  pi  e.  RR  /\  pi  =/=  0 )  ->  ( A  /  pi )  e.  RR )
7163, 69, 70mp3an23 1272 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  ( A  /  pi )  e.  RR )
7262, 71syl 16 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  /  pi )  e.  RR )
7372flcld 11208 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( |_ `  ( A  /  pi ) )  e.  ZZ )
7473zcnd 10377 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( |_ `  ( A  /  pi ) )  e.  CC )
75 mulcl 9075 . . . . . . . . . . . . 13  |-  ( ( pi  e.  CC  /\  ( |_ `  ( A  /  pi ) )  e.  CC )  -> 
( pi  x.  ( |_ `  ( A  /  pi ) ) )  e.  CC )
7668, 74, 75sylancr 646 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( pi  x.  ( |_ `  ( A  /  pi ) ) )  e.  CC )
77 negsub 9350 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( pi  x.  ( |_ `  ( A  /  pi ) ) )  e.  CC )  ->  ( A  +  -u ( pi  x.  ( |_ `  ( A  /  pi ) ) ) )  =  ( A  -  ( pi  x.  ( |_ `  ( A  /  pi ) ) ) ) )
7876, 77syldan 458 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  +  -u ( pi  x.  ( |_ `  ( A  /  pi ) ) ) )  =  ( A  -  ( pi  x.  ( |_ `  ( A  /  pi ) ) ) ) )
79 mulcom 9077 . . . . . . . . . . . . . . 15  |-  ( ( pi  e.  CC  /\  ( |_ `  ( A  /  pi ) )  e.  CC )  -> 
( pi  x.  ( |_ `  ( A  /  pi ) ) )  =  ( ( |_ `  ( A  /  pi ) )  x.  pi ) )
8068, 74, 79sylancr 646 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( pi  x.  ( |_ `  ( A  /  pi ) ) )  =  ( ( |_ `  ( A  /  pi ) )  x.  pi ) )
8180negeqd 9301 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  ->  -u ( pi  x.  ( |_ `  ( A  /  pi ) ) )  = 
-u ( ( |_
`  ( A  /  pi ) )  x.  pi ) )
82 mulneg1 9471 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  ( A  /  pi ) )  e.  CC  /\  pi  e.  CC )  ->  ( -u ( |_ `  ( A  /  pi ) )  x.  pi )  = 
-u ( ( |_
`  ( A  /  pi ) )  x.  pi ) )
8374, 68, 82sylancl 645 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( -u ( |_ `  ( A  /  pi ) )  x.  pi )  =  -u ( ( |_ `  ( A  /  pi ) )  x.  pi ) )
8481, 83eqtr4d 2472 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  ->  -u ( pi  x.  ( |_ `  ( A  /  pi ) ) )  =  ( -u ( |_
`  ( A  /  pi ) )  x.  pi ) )
8584oveq2d 6098 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  +  -u ( pi  x.  ( |_ `  ( A  /  pi ) ) ) )  =  ( A  +  ( -u ( |_ `  ( A  /  pi ) )  x.  pi ) ) )
8667, 78, 853eqtr2d 2475 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  mod  pi )  =  ( A  +  ( -u ( |_ `  ( A  /  pi ) )  x.  pi ) ) )
8786fveq2d 5733 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( sin `  ( A  mod  pi ) )  =  ( sin `  ( A  +  ( -u ( |_ `  ( A  /  pi ) )  x.  pi ) ) ) )
8887fveq2d 5733 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( abs `  ( sin `  ( A  mod  pi ) ) )  =  ( abs `  ( sin `  ( A  +  ( -u ( |_ `  ( A  /  pi ) )  x.  pi ) ) ) ) )
8973znegcld 10378 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  ->  -u ( |_ `  ( A  /  pi ) )  e.  ZZ )
90 abssinper 20427 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u ( |_ `  ( A  /  pi ) )  e.  ZZ )  -> 
( abs `  ( sin `  ( A  +  ( -u ( |_ `  ( A  /  pi ) )  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
9189, 90syldan 458 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( abs `  ( sin `  ( A  +  ( -u ( |_ `  ( A  /  pi ) )  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
92 simpr 449 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( sin `  A
)  =  0 )
9392fveq2d 5733 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( abs `  ( sin `  A ) )  =  ( abs `  0
) )
9488, 91, 933eqtrd 2473 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( abs `  ( sin `  ( A  mod  pi ) ) )  =  ( abs `  0
) )
95 abs0 12091 . . . . . . 7  |-  ( abs `  0 )  =  0
9694, 95syl6eq 2485 . . . . . 6  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( abs `  ( sin `  ( A  mod  pi ) ) )  =  0 )
97 modcl 11254 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  pi  e.  RR+ )  ->  ( A  mod  pi )  e.  RR )
9862, 65, 97sylancl 645 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  mod  pi )  e.  RR )
99 modlt 11259 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  pi  e.  RR+ )  ->  ( A  mod  pi )  < 
pi )
10062, 65, 99sylancl 645 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  mod  pi )  <  pi )
10198, 100jca 520 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( ( A  mod  pi )  e.  RR  /\  ( A  mod  pi )  <  pi ) )
102101biantrurd 496 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( 0  <  ( A  mod  pi )  <->  ( (
( A  mod  pi )  e.  RR  /\  ( A  mod  pi )  < 
pi )  /\  0  <  ( A  mod  pi ) ) ) )
103 0re 9092 . . . . . . . . . . . 12  |-  0  e.  RR
104 rexr 9131 . . . . . . . . . . . . 13  |-  ( 0  e.  RR  ->  0  e.  RR* )
105 rexr 9131 . . . . . . . . . . . . 13  |-  ( pi  e.  RR  ->  pi  e.  RR* )
106 elioo2 10958 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( A  mod  pi )  e.  ( 0 (,) pi )  <->  ( ( A  mod  pi )  e.  RR  /\  0  < 
( A  mod  pi )  /\  ( A  mod  pi )  <  pi ) ) )
107104, 105, 106syl2an 465 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  pi  e.  RR )  -> 
( ( A  mod  pi )  e.  (
0 (,) pi )  <-> 
( ( A  mod  pi )  e.  RR  /\  0  <  ( A  mod  pi )  /\  ( A  mod  pi )  <  pi ) ) )
108103, 63, 107mp2an 655 . . . . . . . . . . 11  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  <->  ( ( A  mod  pi )  e.  RR  /\  0  < 
( A  mod  pi )  /\  ( A  mod  pi )  <  pi ) )
109 3anan32 949 . . . . . . . . . . 11  |-  ( ( ( A  mod  pi )  e.  RR  /\  0  <  ( A  mod  pi )  /\  ( A  mod  pi )  <  pi )  <-> 
( ( ( A  mod  pi )  e.  RR  /\  ( A  mod  pi )  < 
pi )  /\  0  <  ( A  mod  pi ) ) )
110108, 109bitri 242 . . . . . . . . . 10  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  <->  ( (
( A  mod  pi )  e.  RR  /\  ( A  mod  pi )  < 
pi )  /\  0  <  ( A  mod  pi ) ) )
111102, 110syl6bbr 256 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( 0  <  ( A  mod  pi )  <->  ( A  mod  pi )  e.  ( 0 (,) pi ) ) )
112 sinq12gt0 20416 . . . . . . . . . 10  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  ( A  mod  pi ) ) )
113 elioore 10947 . . . . . . . . . . . 12  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  ->  ( A  mod  pi )  e.  RR )
114113resincld 12745 . . . . . . . . . . 11  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  ->  ( sin `  ( A  mod  pi ) )  e.  RR )
115 ltle 9164 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( sin `  ( A  mod  pi ) )  e.  RR )  -> 
( 0  <  ( sin `  ( A  mod  pi ) )  ->  0  <_  ( sin `  ( A  mod  pi ) ) ) )
116103, 114, 115sylancr 646 . . . . . . . . . . . 12  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  ->  (
0  <  ( sin `  ( A  mod  pi ) )  ->  0  <_  ( sin `  ( A  mod  pi ) ) ) )
117112, 116mpd 15 . . . . . . . . . . 11  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  ->  0  <_  ( sin `  ( A  mod  pi ) ) )
118114, 117absidd 12226 . . . . . . . . . 10  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  ->  ( abs `  ( sin `  ( A  mod  pi ) ) )  =  ( sin `  ( A  mod  pi ) ) )
119112, 118breqtrrd 4239 . . . . . . . . 9  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  ->  0  <  ( abs `  ( sin `  ( A  mod  pi ) ) ) )
120111, 119syl6bi 221 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( 0  <  ( A  mod  pi )  -> 
0  <  ( abs `  ( sin `  ( A  mod  pi ) ) ) ) )
12198resincld 12745 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( sin `  ( A  mod  pi ) )  e.  RR )
122121recnd 9115 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( sin `  ( A  mod  pi ) )  e.  CC )
123122abscld 12239 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( abs `  ( sin `  ( A  mod  pi ) ) )  e.  RR )
124 ltneOLD 9172 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( abs `  ( sin `  ( A  mod  pi ) ) )  e.  RR  /\  0  < 
( abs `  ( sin `  ( A  mod  pi ) ) ) )  ->  ( abs `  ( sin `  ( A  mod  pi ) ) )  =/=  0 )
1251243expia 1156 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( abs `  ( sin `  ( A  mod  pi ) ) )  e.  RR )  ->  (
0  <  ( abs `  ( sin `  ( A  mod  pi ) ) )  ->  ( abs `  ( sin `  ( A  mod  pi ) ) )  =/=  0 ) )
126103, 123, 125sylancr 646 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( 0  <  ( abs `  ( sin `  ( A  mod  pi ) ) )  ->  ( abs `  ( sin `  ( A  mod  pi ) ) )  =/=  0 ) )
127120, 126syld 43 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( 0  <  ( A  mod  pi )  -> 
( abs `  ( sin `  ( A  mod  pi ) ) )  =/=  0 ) )
128127necon2bd 2654 . . . . . 6  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( ( abs `  ( sin `  ( A  mod  pi ) ) )  =  0  ->  -.  0  <  ( A  mod  pi ) ) )
12996, 128mpd 15 . . . . 5  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  ->  -.  0  <  ( A  mod  pi ) )
130 modge0 11258 . . . . . . . 8  |-  ( ( A  e.  RR  /\  pi  e.  RR+ )  ->  0  <_  ( A  mod  pi ) )
13162, 65, 130sylancl 645 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
0  <_  ( A  mod  pi ) )
132 leloe 9162 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  ( A  mod  pi )  e.  RR )  -> 
( 0  <_  ( A  mod  pi )  <->  ( 0  <  ( A  mod  pi )  \/  0  =  ( A  mod  pi ) ) ) )
133103, 98, 132sylancr 646 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( 0  <_  ( A  mod  pi )  <->  ( 0  <  ( A  mod  pi )  \/  0  =  ( A  mod  pi ) ) ) )
134131, 133mpbid 203 . . . . . 6  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( 0  <  ( A  mod  pi )  \/  0  =  ( A  mod  pi ) ) )
135134ord 368 . . . . 5  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( -.  0  < 
( A  mod  pi )  ->  0  =  ( A  mod  pi ) ) )
136129, 135mpd 15 . . . 4  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
0  =  ( A  mod  pi ) )
137136eqcomd 2442 . . 3  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  mod  pi )  =  0 )
138 mod0 11256 . . . 4  |-  ( ( A  e.  RR  /\  pi  e.  RR+ )  ->  (
( A  mod  pi )  =  0  <->  ( A  /  pi )  e.  ZZ ) )
13962, 65, 138sylancl 645 . . 3  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( ( A  mod  pi )  =  0  <->  ( A  /  pi )  e.  ZZ ) )
140137, 139mpbid 203 . 2  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  /  pi )  e.  ZZ )
141 divcan1 9688 . . . . 5  |-  ( ( A  e.  CC  /\  pi  e.  CC  /\  pi  =/=  0 )  ->  (
( A  /  pi )  x.  pi )  =  A )
14268, 69, 141mp3an23 1272 . . . 4  |-  ( A  e.  CC  ->  (
( A  /  pi )  x.  pi )  =  A )
143142fveq2d 5733 . . 3  |-  ( A  e.  CC  ->  ( sin `  ( ( A  /  pi )  x.  pi ) )  =  ( sin `  A
) )
144 sinkpi 20428 . . 3  |-  ( ( A  /  pi )  e.  ZZ  ->  ( sin `  ( ( A  /  pi )  x.  pi ) )  =  0 )
145143, 144sylan9req 2490 . 2  |-  ( ( A  e.  CC  /\  ( A  /  pi )  e.  ZZ )  ->  ( sin `  A
)  =  0 )
146140, 145impbida 807 1  |-  ( A  e.  CC  ->  (
( sin `  A
)  =  0  <->  ( A  /  pi )  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2600   class class class wbr 4213   ` cfv 5455  (class class class)co 6082   CCcc 8989   RRcr 8990   0cc0 8991   1c1 8992   _ici 8993    + caddc 8994    x. cmul 8996   RR*cxr 9120    < clt 9121    <_ cle 9122    - cmin 9292   -ucneg 9293    / cdiv 9678   2c2 10050   ZZcz 10283   RR+crp 10613   (,)cioo 10917   |_cfl 11202    mod cmo 11251   abscabs 12040   expce 12665   sincsin 12667   picpi 12670
This theorem is referenced by:  coseq1  20431  efeq1  20432  cosne0  20433  logf1o2  20542
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069  ax-addf 9070  ax-mulf 9071
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-iin 4097  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-se 4543  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-isom 5464  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6306  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-2o 6726  df-oadd 6729  df-er 6906  df-map 7021  df-pm 7022  df-ixp 7065  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-fi 7417  df-sup 7447  df-oi 7480  df-card 7827  df-cda 8049  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-2 10059  df-3 10060  df-4 10061  df-5 10062  df-6 10063  df-7 10064  df-8 10065  df-9 10066  df-10 10067  df-n0 10223  df-z 10284  df-dec 10384  df-uz 10490  df-q 10576  df-rp 10614  df-xneg 10711  df-xadd 10712  df-xmul 10713  df-ioo 10921  df-ioc 10922  df-ico 10923  df-icc 10924  df-fz 11045  df-fzo 11137  df-fl 11203  df-mod 11252  df-seq 11325  df-exp 11384  df-fac 11568  df-bc 11595  df-hash 11620  df-shft 11883  df-cj 11905  df-re 11906  df-im 11907  df-sqr 12041  df-abs 12042  df-limsup 12266  df-clim 12283  df-rlim 12284  df-sum 12481  df-ef 12671  df-sin 12673  df-cos 12674  df-pi 12676  df-struct 13472  df-ndx 13473  df-slot 13474  df-base 13475  df-sets 13476  df-ress 13477  df-plusg 13543  df-mulr 13544  df-starv 13545  df-sca 13546  df-vsca 13547  df-tset 13549  df-ple 13550  df-ds 13552  df-unif 13553  df-hom 13554  df-cco 13555  df-rest 13651  df-topn 13652  df-topgen 13668  df-pt 13669  df-prds 13672  df-xrs 13727  df-0g 13728  df-gsum 13729  df-qtop 13734  df-imas 13735  df-xps 13737  df-mre 13812  df-mrc 13813  df-acs 13815  df-mnd 14691  df-submnd 14740  df-mulg 14816  df-cntz 15117  df-cmn 15415  df-psmet 16695  df-xmet 16696  df-met 16697  df-bl 16698  df-mopn 16699  df-fbas 16700  df-fg 16701  df-cnfld 16705  df-top 16964  df-bases 16966  df-topon 16967  df-topsp 16968  df-cld 17084  df-ntr 17085  df-cls 17086  df-nei 17163  df-lp 17201  df-perf 17202  df-cn 17292  df-cnp 17293  df-haus 17380  df-tx 17595  df-hmeo 17788  df-fil 17879  df-fm 17971  df-flim 17972  df-flf 17973  df-xms 18351  df-ms 18352  df-tms 18353  df-cncf 18909  df-limc 19754  df-dv 19755
  Copyright terms: Public domain W3C validator