MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinhalfpilem Structured version   Unicode version

Theorem sinhalfpilem 20374
Description: Lemma for sinhalfpi 20376 and coshalfpi 20377. (Contributed by Paul Chapman, 23-Jan-2008.)
Assertion
Ref Expression
sinhalfpilem  |-  ( ( sin `  ( pi 
/  2 ) )  =  1  /\  ( cos `  ( pi  / 
2 ) )  =  0 )

Proof of Theorem sinhalfpilem
StepHypRef Expression
1 0lt1 9550 . . . . . 6  |-  0  <  1
2 0re 9091 . . . . . . 7  |-  0  e.  RR
3 1re 9090 . . . . . . 7  |-  1  e.  RR
42, 3ltnsymi 9192 . . . . . 6  |-  ( 0  <  1  ->  -.  1  <  0 )
51, 4ax-mp 8 . . . . 5  |-  -.  1  <  0
6 lt0neg1 9534 . . . . . 6  |-  ( 1  e.  RR  ->  (
1  <  0  <->  0  <  -u 1 ) )
73, 6ax-mp 8 . . . . 5  |-  ( 1  <  0  <->  0  <  -u 1 )
85, 7mtbi 290 . . . 4  |-  -.  0  <  -u 1
9 pire 20372 . . . . . . . 8  |-  pi  e.  RR
109rehalfcli 10216 . . . . . . 7  |-  ( pi 
/  2 )  e.  RR
11 2re 10069 . . . . . . . 8  |-  2  e.  RR
12 pipos 20373 . . . . . . . 8  |-  0  <  pi
13 2pos 10082 . . . . . . . 8  |-  0  <  2
149, 11, 12, 13divgt0ii 9928 . . . . . . 7  |-  0  <  ( pi  /  2
)
15 4re 10073 . . . . . . . . 9  |-  4  e.  RR
16 pigt2lt4 20370 . . . . . . . . . 10  |-  ( 2  <  pi  /\  pi  <  4 )
1716simpri 449 . . . . . . . . 9  |-  pi  <  4
189, 15, 17ltleii 9196 . . . . . . . 8  |-  pi  <_  4
1911, 13pm3.2i 442 . . . . . . . . . 10  |-  ( 2  e.  RR  /\  0  <  2 )
20 ledivmul 9883 . . . . . . . . . 10  |-  ( ( pi  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( pi 
/  2 )  <_ 
2  <->  pi  <_  ( 2  x.  2 ) ) )
219, 11, 19, 20mp3an 1279 . . . . . . . . 9  |-  ( ( pi  /  2 )  <_  2  <->  pi  <_  ( 2  x.  2 ) )
22 2t2e4 10127 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
2322breq2i 4220 . . . . . . . . 9  |-  ( pi 
<_  ( 2  x.  2 )  <->  pi  <_  4 )
2421, 23bitr2i 242 . . . . . . . 8  |-  ( pi 
<_  4  <->  ( pi  / 
2 )  <_  2
)
2518, 24mpbi 200 . . . . . . 7  |-  ( pi 
/  2 )  <_ 
2
26 0xr 9131 . . . . . . . 8  |-  0  e.  RR*
27 elioc2 10973 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
( pi  /  2
)  e.  ( 0 (,] 2 )  <->  ( (
pi  /  2 )  e.  RR  /\  0  <  ( pi  /  2
)  /\  ( pi  /  2 )  <_  2
) ) )
2826, 11, 27mp2an 654 . . . . . . 7  |-  ( ( pi  /  2 )  e.  ( 0 (,] 2 )  <->  ( (
pi  /  2 )  e.  RR  /\  0  <  ( pi  /  2
)  /\  ( pi  /  2 )  <_  2
) )
2910, 14, 25, 28mpbir3an 1136 . . . . . 6  |-  ( pi 
/  2 )  e.  ( 0 (,] 2
)
30 sin02gt0 12793 . . . . . 6  |-  ( ( pi  /  2 )  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  (
pi  /  2 ) ) )
3129, 30ax-mp 8 . . . . 5  |-  0  <  ( sin `  (
pi  /  2 ) )
32 breq2 4216 . . . . 5  |-  ( ( sin `  ( pi 
/  2 ) )  =  -u 1  ->  (
0  <  ( sin `  ( pi  /  2
) )  <->  0  <  -u 1 ) )
3331, 32mpbii 203 . . . 4  |-  ( ( sin `  ( pi 
/  2 ) )  =  -u 1  ->  0  <  -u 1 )
348, 33mto 169 . . 3  |-  -.  ( sin `  ( pi  / 
2 ) )  = 
-u 1
35 sq1 11476 . . . . . 6  |-  ( 1 ^ 2 )  =  1
36 resincl 12741 . . . . . . . . . . . . . 14  |-  ( ( pi  /  2 )  e.  RR  ->  ( sin `  ( pi  / 
2 ) )  e.  RR )
3710, 36ax-mp 8 . . . . . . . . . . . . 13  |-  ( sin `  ( pi  /  2
) )  e.  RR
3837, 31gt0ne0ii 9563 . . . . . . . . . . . 12  |-  ( sin `  ( pi  /  2
) )  =/=  0
3938neii 2603 . . . . . . . . . . 11  |-  -.  ( sin `  ( pi  / 
2 ) )  =  0
40 2ne0 10083 . . . . . . . . . . . . . 14  |-  2  =/=  0
4140neii 2603 . . . . . . . . . . . . 13  |-  -.  2  =  0
429recni 9102 . . . . . . . . . . . . . . . . . 18  |-  pi  e.  CC
43 2cn 10070 . . . . . . . . . . . . . . . . . 18  |-  2  e.  CC
4442, 43, 40divcan2i 9757 . . . . . . . . . . . . . . . . 17  |-  ( 2  x.  ( pi  / 
2 ) )  =  pi
4544fveq2i 5731 . . . . . . . . . . . . . . . 16  |-  ( sin `  ( 2  x.  (
pi  /  2 ) ) )  =  ( sin `  pi )
4610recni 9102 . . . . . . . . . . . . . . . . 17  |-  ( pi 
/  2 )  e.  CC
47 sin2t 12778 . . . . . . . . . . . . . . . . 17  |-  ( ( pi  /  2 )  e.  CC  ->  ( sin `  ( 2  x.  ( pi  /  2
) ) )  =  ( 2  x.  (
( sin `  (
pi  /  2 ) )  x.  ( cos `  ( pi  /  2
) ) ) ) )
4846, 47ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( sin `  ( 2  x.  (
pi  /  2 ) ) )  =  ( 2  x.  ( ( sin `  ( pi 
/  2 ) )  x.  ( cos `  (
pi  /  2 ) ) ) )
4945, 48eqtr3i 2458 . . . . . . . . . . . . . . 15  |-  ( sin `  pi )  =  ( 2  x.  ( ( sin `  ( pi 
/  2 ) )  x.  ( cos `  (
pi  /  2 ) ) ) )
50 sinpi 20371 . . . . . . . . . . . . . . 15  |-  ( sin `  pi )  =  0
5149, 50eqtr3i 2458 . . . . . . . . . . . . . 14  |-  ( 2  x.  ( ( sin `  ( pi  /  2
) )  x.  ( cos `  ( pi  / 
2 ) ) ) )  =  0
52 sincl 12727 . . . . . . . . . . . . . . . . 17  |-  ( ( pi  /  2 )  e.  CC  ->  ( sin `  ( pi  / 
2 ) )  e.  CC )
5346, 52ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( sin `  ( pi  /  2
) )  e.  CC
54 coscl 12728 . . . . . . . . . . . . . . . . 17  |-  ( ( pi  /  2 )  e.  CC  ->  ( cos `  ( pi  / 
2 ) )  e.  CC )
5546, 54ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( cos `  ( pi  /  2
) )  e.  CC
5653, 55mulcli 9095 . . . . . . . . . . . . . . 15  |-  ( ( sin `  ( pi 
/  2 ) )  x.  ( cos `  (
pi  /  2 ) ) )  e.  CC
5743, 56mul0ori 9670 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  ( ( sin `  ( pi 
/  2 ) )  x.  ( cos `  (
pi  /  2 ) ) ) )  =  0  <->  ( 2  =  0  \/  ( ( sin `  ( pi 
/  2 ) )  x.  ( cos `  (
pi  /  2 ) ) )  =  0 ) )
5851, 57mpbi 200 . . . . . . . . . . . . 13  |-  ( 2  =  0  \/  (
( sin `  (
pi  /  2 ) )  x.  ( cos `  ( pi  /  2
) ) )  =  0 )
5941, 58mtp-or 1547 . . . . . . . . . . . 12  |-  ( ( sin `  ( pi 
/  2 ) )  x.  ( cos `  (
pi  /  2 ) ) )  =  0
6053, 55mul0ori 9670 . . . . . . . . . . . 12  |-  ( ( ( sin `  (
pi  /  2 ) )  x.  ( cos `  ( pi  /  2
) ) )  =  0  <->  ( ( sin `  ( pi  /  2
) )  =  0  \/  ( cos `  (
pi  /  2 ) )  =  0 ) )
6159, 60mpbi 200 . . . . . . . . . . 11  |-  ( ( sin `  ( pi 
/  2 ) )  =  0  \/  ( cos `  ( pi  / 
2 ) )  =  0 )
6239, 61mtp-or 1547 . . . . . . . . . 10  |-  ( cos `  ( pi  /  2
) )  =  0
6362oveq1i 6091 . . . . . . . . 9  |-  ( ( cos `  ( pi 
/  2 ) ) ^ 2 )  =  ( 0 ^ 2 )
64 sq0 11473 . . . . . . . . 9  |-  ( 0 ^ 2 )  =  0
6563, 64eqtri 2456 . . . . . . . 8  |-  ( ( cos `  ( pi 
/  2 ) ) ^ 2 )  =  0
6665oveq2i 6092 . . . . . . 7  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  2
) ) ^ 2 ) )  =  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  0 )
67 sincossq 12777 . . . . . . . 8  |-  ( ( pi  /  2 )  e.  CC  ->  (
( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  2
) ) ^ 2 ) )  =  1 )
6846, 67ax-mp 8 . . . . . . 7  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  ( ( cos `  ( pi  /  2
) ) ^ 2 ) )  =  1
6966, 68eqtr3i 2458 . . . . . 6  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  0 )  =  1
7053sqcli 11462 . . . . . . 7  |-  ( ( sin `  ( pi 
/  2 ) ) ^ 2 )  e.  CC
7170addid1i 9253 . . . . . 6  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  +  0 )  =  ( ( sin `  (
pi  /  2 ) ) ^ 2 )
7235, 69, 713eqtr2ri 2463 . . . . 5  |-  ( ( sin `  ( pi 
/  2 ) ) ^ 2 )  =  ( 1 ^ 2 )
73 ax-1cn 9048 . . . . . 6  |-  1  e.  CC
7453, 73sqeqori 11493 . . . . 5  |-  ( ( ( sin `  (
pi  /  2 ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( ( sin `  ( pi  / 
2 ) )  =  1  \/  ( sin `  ( pi  /  2
) )  =  -u
1 ) )
7572, 74mpbi 200 . . . 4  |-  ( ( sin `  ( pi 
/  2 ) )  =  1  \/  ( sin `  ( pi  / 
2 ) )  = 
-u 1 )
7675ori 365 . . 3  |-  ( -.  ( sin `  (
pi  /  2 ) )  =  1  -> 
( sin `  (
pi  /  2 ) )  =  -u 1
)
7734, 76mt3 173 . 2  |-  ( sin `  ( pi  /  2
) )  =  1
7877, 62pm3.2i 442 1  |-  ( ( sin `  ( pi 
/  2 ) )  =  1  /\  ( cos `  ( pi  / 
2 ) )  =  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995   RR*cxr 9119    < clt 9120    <_ cle 9121   -ucneg 9292    / cdiv 9677   2c2 10049   4c4 10051   (,]cioc 10917   ^cexp 11382   sincsin 12666   cosccos 12667   picpi 12669
This theorem is referenced by:  sinhalfpi  20376  coshalfpi  20377
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673  df-pi 12675  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754
  Copyright terms: Public domain W3C validator