MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinltx Unicode version

Theorem sinltx 12469
Description: The sine of a positive real number is less than its argument. (Contributed by Mario Carneiro, 29-Jul-2014.)
Assertion
Ref Expression
sinltx  |-  ( A  e.  RR+  ->  ( sin `  A )  <  A
)

Proof of Theorem sinltx
StepHypRef Expression
1 rpre 10360 . . . . 5  |-  ( A  e.  RR+  ->  A  e.  RR )
21adantr 451 . . . 4  |-  ( ( A  e.  RR+  /\  1  <  A )  ->  A  e.  RR )
32resincld 12423 . . 3  |-  ( ( A  e.  RR+  /\  1  <  A )  ->  ( sin `  A )  e.  RR )
4 1re 8837 . . . 4  |-  1  e.  RR
54a1i 10 . . 3  |-  ( ( A  e.  RR+  /\  1  <  A )  ->  1  e.  RR )
6 sinbnd 12460 . . . . . 6  |-  ( A  e.  RR  ->  ( -u 1  <_  ( sin `  A )  /\  ( sin `  A )  <_ 
1 ) )
76simprd 449 . . . . 5  |-  ( A  e.  RR  ->  ( sin `  A )  <_ 
1 )
81, 7syl 15 . . . 4  |-  ( A  e.  RR+  ->  ( sin `  A )  <_  1
)
98adantr 451 . . 3  |-  ( ( A  e.  RR+  /\  1  <  A )  ->  ( sin `  A )  <_ 
1 )
10 simpr 447 . . 3  |-  ( ( A  e.  RR+  /\  1  <  A )  ->  1  <  A )
113, 5, 2, 9, 10lelttrd 8974 . 2  |-  ( ( A  e.  RR+  /\  1  <  A )  ->  ( sin `  A )  < 
A )
12 df-3an 936 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  1 )  <->  ( ( A  e.  RR  /\  0  <  A )  /\  A  <_  1 ) )
13 0xr 8878 . . . . 5  |-  0  e.  RR*
14 elioc2 10713 . . . . 5  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
1513, 4, 14mp2an 653 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
16 elrp 10356 . . . . 5  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
1716anbi1i 676 . . . 4  |-  ( ( A  e.  RR+  /\  A  <_  1 )  <->  ( ( A  e.  RR  /\  0  <  A )  /\  A  <_  1 ) )
1812, 15, 173bitr4i 268 . . 3  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR+  /\  A  <_ 
1 ) )
19 sin01bnd 12465 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A )  /\  ( sin `  A )  < 
A ) )
2019simprd 449 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  < 
A )
2118, 20sylbir 204 . 2  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( sin `  A )  < 
A )
224a1i 10 . 2  |-  ( A  e.  RR+  ->  1  e.  RR )
2311, 21, 22, 1ltlecasei 8928 1  |-  ( A  e.  RR+  ->  ( sin `  A )  <  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   -ucneg 9038    / cdiv 9423   3c3 9796   RR+crp 10354   (,]cioc 10657   ^cexp 11104   sincsin 12345
This theorem is referenced by:  basellem8  20325
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ioc 10661  df-ico 10662  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352
  Copyright terms: Public domain W3C validator